Advertisements
Advertisements
प्रश्न
Differentiate the following:
y = `sin(tan(sqrt(sinx)))`
उत्तर
y = `sin(tan(sqrt(sinx)))`
y = f(g(x))
`("d"y)/("d"x)` = f'(g(x)) . g'(x)
`("d"y)/("d"x) = cos(tan(sqrt(sinx))) sec^2(sqrt(sinx)) xx 1/2(sinx)^(1/2 - 1) cos x`
`("d"y)/("d"x) = 1/2 cos (tan(sqrt(sinx))) sec^2 (sqrt(sinx)) (sinx)^(- 1/2) cosx`
`("d"y)/("d"x) = (cos(tan(sqrt(sinx))) sec^2(sqrt(sinx)) cosx)/(2(sinx)^(1/2)`
APPEARS IN
संबंधित प्रश्न
Find the derivatives of the following functions with respect to corresponding independent variables:
g(t) = 4 sec t + tan t
Find the derivatives of the following functions with respect to corresponding independent variables:
y = log10 x
Differentiate the following:
f(t) = `root(3)(1 + tan "t")`
Differentiate the following:
y = e–mx
Differentiate the following:
y = `(x^2 + 1) root(3)(x^2 + 2)`
Differentiate the following:
y = `x"e"^(-x^2)`
Differentiate the following:
y = `sqrt(1 + 2tanx)`
Differentiate the following:
y = (1 + cos2)6
Find the derivatives of the following:
(cos x)log x
Find the derivatives of the following:
If cos(xy) = x, show that `(-(1 + ysin(xy)))/(xsiny)`
Find the derivatives of the following:
x = `"a" cos^3"t"` ; y = `"a" sin^3"t"`
Find the derivatives of the following:
x = a (cos t + t sin t); y = a (sin t – t cos t)
Find the derivatives of the following:
`cos^-1 ((1 - x^2)/(1 + x^2))`
Find the derivatives of the following:
sin-1 (3x – 4x3)
Find the derivatives of the following:
If y = `(sin^-1 x)/sqrt(1 - x^2)`, show that (1 – x2)y2 – 3xy1 – y = 0
Find the derivatives of the following:
If x = a(θ + sin θ), y = a(1 – cos θ) then prove that at θ = `pi/2`, yn = `1/"a"`
Choose the correct alternative:
If x = a sin θ and y = b cos θ, then `("d"^2y)/("d"x^2)` is
Choose the correct alternative:
The differential coefficient of `log_10 x` with respect to `log_x 10` is