Advertisements
Advertisements
प्रश्न
Differentiate the following:
y = `sin^-1 ((1 - x^2)/(1 + x^2))`
उत्तर
y = `sin^-1 ((1 - x^2)/(1 + x^2))`
y = f(g(x)
`("d"y)/("d"x)` = f'(g(x)) . g'(x)
`("d"y)/("d"x) = 1/sqrt(1 - ((1 - x^2)/(1 + x^2))^2) xx "d"/("d"x) ((1 - x^2)/(1 + x^2))`
= `1/sqrt(((1 + x^2)^2 - (1 - x^2)^2)/(1 + x^2)^2) xx ((1 + x^2)(- 2x) - (1 - x^2)(2x))/(1 + x^2)^2`
= `1/sqrt((1 + 2x^2 + x^4 - (1 - 2x^2 + x^4))/((1 + x^2))) xx (-2x - 2x^3 - 2x + 2x^3)/(1 + x^2)^2`
= `(1 + x^2)/sqrt(1 + 2x^2 + x^4 - 1 + 2x^2 - x^4) xx (-4x)/(1 + x^2)^2`
= `(-4x)/(sqrt(4x^2) (1 + x^2))`
`("d"y)/("d"x) = (-4x)/(2x(1 + x^2))`
= `- 2/(1 + x^2)`
APPEARS IN
संबंधित प्रश्न
Find the derivatives of the following functions with respect to corresponding independent variables:
y = ex sin x
Find the derivatives of the following functions with respect to corresponding independent variables:
y = `sinx/x^2`
Find the derivatives of the following functions with respect to corresponding independent variables:
y = e-x . log x
Find the derivatives of the following functions with respect to corresponding independent variables:
y = log10 x
Differentiate the following:
y = `x"e"^(-x^2)`
Differentiate the following:
s(t) = `root(4)(("t"^3 + 1)/("t"^3 - 1)`
Differentiate the following:
y = `sqrt(1 + 2tanx)`
Differentiate the following:
y = `sqrt(x +sqrt(x)`
Differentiate the following:
y = `sqrt(x + sqrt(x + sqrt(x)`
Find the derivatives of the following:
`sqrt(x) = "e"^((x - y))`
Find the derivatives of the following:
xy = yx
Find the derivatives of the following:
`tan^-1 = ((6x)/(1 - 9x^2))`
Find the derivatives of the following:
`tan^-1 ((cos x + sin x)/(cos x - sin x))`
Choose the correct alternative:
If y = `1/4 u^4`, u = `2/3 x^3 + 5`, then `("d"y)/("d"x)` is
Choose the correct alternative:
If y = cos (sin x2), then `("d"y)/("d"x)` at x = `sqrt(pi/2)` is