Advertisements
Advertisements
प्रश्न
Find the derivatives of the following:
xy = yx
उत्तर
xy = yx
Taking log on both sides
log xy = log yx
y log x = x log y
Differentiate with respect to x
`y xx 1/x + (log x) ("d"y)/("d"x) = x * 1/y xx ("d"y)/("d"x) + (log y) 1`
`y/x + (log x) ("d"y)/("d"x) = x/y * ("d"y)/("d"x) + log y`
`(log ) ("d"y)/("d"x) - x/y ("d"y)/("d"x) = log y - y/x`
`(log x - x/y) ("d"y)/("d"x) = log y - y/x`
`(y log x - x)/y * ("d"y)/("d"x) = (x log y - y)/x`
`("d"y)/("d"x) = y/x * (x log y - y)/(y log x - x)`
`("d"y)/("d"x) = (y (x log y - y))/(x(y log x - x))`
APPEARS IN
संबंधित प्रश्न
Find the derivatives of the following functions with respect to corresponding independent variables:
g(t) = 4 sec t + tan t
Find the derivatives of the following functions with respect to corresponding independent variables:
y = tan θ (sin θ + cos θ)
Differentiate the following:
y = cos (tan x)
Differentiate the following:
y = e–mx
Differentiate the following:
f(x) = `x/sqrt(7 - 3x)`
Differentiate the following:
y = `"e"^(xcosx)`
Find the derivatives of the following:
y = `x^(cosx)`
Find the derivatives of the following:
y = `x^(logx) + (logx)^x`
Find the derivatives of the following:
(cos x)log x
Find the derivatives of the following:
`sqrt(x^2 + y^2) = tan^-1 (y/x)`
Find the derivatives of the following:
`tan^-1sqrt((1 - cos x)/(1 + cos x)`
Find the derivatives of the following:
`cos^-1 ((1 - x^2)/(1 + x^2))`
Find the derivatives of the following:
Find the derivative of sin x2 with respect to x2
Find the derivatives of the following:
If y = sin–1x then find y”
Choose the correct alternative:
If y = `1/("a" - z)`, then `("d"z)/("d"y)` is
Choose the correct alternative:
x = `(1 - "t"^2)/(1 + "t"^2)`, y = `(2"t")/(1 + "t"^2)` then `("d"y)/("d"x)` is
Choose the correct alternative:
If f(x) = `{{:("a"x^2 - "b"",", - 1 < x < 1),(1/|x|",", "elsewhere"):}` is differentiable at x = 1, then