Advertisements
Advertisements
प्रश्न
Differentiate the following:
y = cos (tan x)
उत्तर
Put u = tan x
`("d"u)/("d"x)` = sec2x
Now y = cos u
⇒ `("d"u)/("d"x)` = – siin u
Now `("d"y)/("d"x) = ("d"y)/("d"u) xx ("d"u)/("d"x)`
= (– sin u)(sec2x)
= – sec2 (sin (tan x))
APPEARS IN
संबंधित प्रश्न
Find the derivatives of the following functions with respect to corresponding independent variables:
y = sin x + cos x
Find the derivatives of the following functions with respect to corresponding independent variables:
g(t) = t3 cos t
Find the derivatives of the following functions with respect to corresponding independent variables:
y = `sinx/(1 + cosx)`
Find the derivatives of the following functions with respect to corresponding independent variables:
y = `(tanx - 1)/secx`
Find the derivatives of the following functions with respect to corresponding independent variables:
y = sin x0
Differentiate the following:
y = (x2 + 4x + 6)5
Differentiate the following:
f(x) = `x/sqrt(7 - 3x)`
Differentiate the following:
y = `sqrt(1 + 2tanx)`
Differentiate the following:
y = sin2(cos kx)
Differentiate the following:
y = `sqrt(x +sqrt(x)`
Differentiate the following:
y = `sin^-1 ((1 - x^2)/(1 + x^2))`
Find the derivatives of the following:
x = a (cos t + t sin t); y = a (sin t – t cos t)
Find the derivatives of the following:
x = `(1 - "t"^2)/(1 + "t"^2)`, y = `(2"t")/(1 + "t"^2)`
Find the derivatives of the following:
sin-1 (3x – 4x3)
Find the derivatives of the following:
If y = sin–1x then find y”
Find the derivatives of the following:
If y = `(cos^-1 x)^2`, prove that `(1 - x^2) ("d"^2y)/("d"x)^2 - x ("d"y)/("d"x) - 2` = 0. Hence find y2 when x = 0
Choose the correct alternative:
If the derivative of (ax – 5)e3x at x = 0 is – 13, then the value of a is
Choose the correct alternative:
x = `(1 - "t"^2)/(1 + "t"^2)`, y = `(2"t")/(1 + "t"^2)` then `("d"y)/("d"x)` is
Choose the correct alternative:
If x = a sin θ and y = b cos θ, then `("d"^2y)/("d"x^2)` is
Choose the correct alternative:
If f(x) = `{{:("a"x^2 - "b"",", - 1 < x < 1),(1/|x|",", "elsewhere"):}` is differentiable at x = 1, then