Advertisements
Advertisements
प्रश्न
Find the derivatives of the following functions with respect to corresponding independent variables:
y = `(tanx - 1)/secx`
उत्तर
y = `(tanx - 1)/secx`
`("d"y)/("d"x) = (secx(sec^2x - 0) - (tan x - )secx tanx)/(sec x)^2`
`("d"y)/("d"x) = (secx[sec^2x - (tan x - 1) tanx])/(sec^2x)`
= `([sec^3x - tan^2xx + tanx])/secx`
= `((1 + tanx))/secx`
= `cos x (1 + sinx/cosx)`
`("d"y)/("d"x)` = cos x + sin x
APPEARS IN
संबंधित प्रश्न
Find the derivatives of the following functions with respect to corresponding independent variables:
y = tan θ (sin θ + cos θ)
Find the derivatives of the following functions with respect to corresponding independent variables:
y = (x2 + 5) log(1 + x) e–3x
Find the derivatives of the following functions with respect to corresponding independent variables:
Draw the function f'(x) if f(x) = 2x2 – 5x + 3
Differentiate the following:
y = tan 3x
Differentiate the following:
y = sin (ex)
Differentiate the following:
F(x) = (x3 + 4x)7
Differentiate the following:
f(t) = `root(3)(1 + tan "t")`
Differentiate the following:
y = `x"e"^(-x^2)`
Differentiate the following:
y = `sqrt(x +sqrt(x)`
Differentiate the following:
y = `sin(tan(sqrt(sinx)))`
Find the derivatives of the following:
`sqrt(x) = "e"^((x - y))`
Find the derivatives of the following:
(cos x)log x
Find the derivatives of the following:
x = `(1 - "t"^2)/(1 + "t"^2)`, y = `(2"t")/(1 + "t"^2)`
Find the derivatives of the following:
sin-1 (3x – 4x3)
Find the derivatives of the following:
Find the derivative of sin x2 with respect to x2
Find the derivatives of the following:
If y = sin–1x then find y”
Find the derivatives of the following:
If x = a(θ + sin θ), y = a(1 – cos θ) then prove that at θ = `pi/2`, yn = `1/"a"`
Choose the correct alternative:
x = `(1 - "t"^2)/(1 + "t"^2)`, y = `(2"t")/(1 + "t"^2)` then `("d"y)/("d"x)` is
Choose the correct alternative:
If f(x) = `{{:(x - 5, "if" x ≤ 1),(4x^2 - 9, "if" 1 < x < 2),(3x + 4, "if" x ≥ 2):}` , then the right hand derivative of f(x) at x = 2 is