Advertisements
Advertisements
प्रश्न
Find the derivatives of the following functions with respect to corresponding independent variables:
y = `sinx/x^2`
उत्तर
y = `sinx/x^2`
`("d"y)/("d"x) = (x^2(cos x) - sin x(2x))/((x^2))`
= `(x^2 cos x - 2x sin x)/x^4`
= `(x[x cos x - 2 sin x])/x^4`
`("d"y)/("d"x) = (x cos x - 2 sin x)/x^3`
APPEARS IN
संबंधित प्रश्न
Find the derivatives of the following functions with respect to corresponding independent variables:
f(x) = x sin x
Find the derivatives of the following functions with respect to corresponding independent variables:
y = cos x – 2 tan x
Find the derivatives of the following functions with respect to corresponding independent variables:
g(t) = 4 sec t + tan t
Find the derivatives of the following functions with respect to corresponding independent variables:
y = `x/(sin x + cosx)`
Find the derivatives of the following functions with respect to corresponding independent variables:
y = x sin x cos x
Find the derivatives of the following functions with respect to corresponding independent variables:
Draw the function f'(x) if f(x) = 2x2 – 5x + 3
Differentiate the following:
y = `"e"^sqrt(x)`
Differentiate the following:
y = cos (a3 + x3)
Differentiate the following:
y = `(x^2 + 1) root(3)(x^2 + 2)`
Differentiate the following:
s(t) = `root(4)(("t"^3 + 1)/("t"^3 - 1)`
Differentiate the following:
y = `(sin^2x)/cos x`
Differentiate the following:
y = `sin^-1 ((1 - x^2)/(1 + x^2))`
Find the derivatives of the following:
If cos(xy) = x, show that `(-(1 + ysin(xy)))/(xsiny)`
Find the derivatives of the following:
`cos[2tan^-1 sqrt((1 - x)/(1 + x))]`
Find the derivatives of the following:
x = `"a" cos^3"t"` ; y = `"a" sin^3"t"`
Find the derivatives of the following:
x = `(1 - "t"^2)/(1 + "t"^2)`, y = `(2"t")/(1 + "t"^2)`
Find the derivatives of the following:
Find the derivative of `sin^-1 ((2x)/(1 + x^2))` with respect to `tan^-1 x`
Find the derivatives of the following:
If u = `tan^-1 (sqrt(1 + x^2) - 1)/x` and v = `tan^-1 x`, find `("d"u)/("d"v)`
Find the derivatives of the following:
If y = etan–1x, show that (1 + x2)y” + (2x – 1)y’ = 0
Choose the correct alternative:
x = `(1 - "t"^2)/(1 + "t"^2)`, y = `(2"t")/(1 + "t"^2)` then `("d"y)/("d"x)` is