Advertisements
Advertisements
प्रश्न
Find the derivatives of the following:
If cos(xy) = x, show that `(-(1 + ysin(xy)))/(xsiny)`
उत्तर
cos (xy) = x
Differentiating with respect to x
`- sin (xy) [x * ("d"y)/("d"x) + y * 1]` = 1
`- x sin (xy) ("d"y)/("d"x) - y sin (xy)` = 1
`- sin (xy) ("d"y)/("d"x) = 1 + y sin (xy)`
`("d"y)/("d"x) = -((1 y sin(xy)))/(x sin (xy))`
APPEARS IN
संबंधित प्रश्न
Find the derivatives of the following functions with respect to corresponding independent variables:
g(t) = t3 cos t
Find the derivatives of the following functions with respect to corresponding independent variables:
y = x sin x cos x
Find the derivatives of the following functions with respect to corresponding independent variables:
y = log10 x
Differentiate the following:
y = (x2 + 4x + 6)5
Differentiate the following:
y = `root(3)(1 + x^3)`
Differentiate the following:
y = cos (a3 + x3)
Differentiate the following:
y = 4 sec 5x
Differentiate the following:
y = (2x – 5)4 (8x2 – 5)–3
Differentiate the following:
y = `(x^2 + 1) root(3)(x^2 + 2)`
Differentiate the following:
y = tan (cos x)
Differentiate the following:
y = sin3x + cos3x
Find the derivatives of the following:
(cos x)log x
Find the derivatives of the following:
tan (x + y) + tan (x – y) = x
Find the derivatives of the following:
`cos[2tan^-1 sqrt((1 - x)/(1 + x))]`
Find the derivatives of the following:
If y = sin–1x then find y”
Find the derivatives of the following:
If x = a(θ + sin θ), y = a(1 – cos θ) then prove that at θ = `pi/2`, yn = `1/"a"`
Choose the correct alternative:
If y = `1/4 u^4`, u = `2/3 x^3 + 5`, then `("d"y)/("d"x)` is
Choose the correct alternative:
If y = `1/("a" - z)`, then `("d"z)/("d"y)` is
Choose the correct alternative:
The number of points in R in which the function f(x) = |x – 1| + |x – 3| + sin x is not differentiable, is