Advertisements
Advertisements
प्रश्न
Find the derivatives of the following functions with respect to corresponding independent variables:
y = log10 x
उत्तर
y = log10 x
y = logex . log10e
`("d"y)/("d"x) = log_10"e"[1/x]`
= `(log_10"e")/x`
APPEARS IN
संबंधित प्रश्न
Find the derivatives of the following functions with respect to corresponding independent variables:
y = cos x – 2 tan x
Find the derivatives of the following functions with respect to corresponding independent variables:
g(t) = 4 sec t + tan t
Differentiate the following:
y = cos (tan x)
Differentiate the following:
F(x) = (x3 + 4x)7
Differentiate the following:
h(t) = `("t" - 1/"t")^(3/2)`
Differentiate the following:
y = (2x – 5)4 (8x2 – 5)–3
Differentiate the following:
y = `(x^2 + 1) root(3)(x^2 + 2)`
Differentiate the following:
y = `sqrt(1 + 2tanx)`
Differentiate the following:
y = sin3x + cos3x
Differentiate the following:
y = `sqrt(x + sqrt(x + sqrt(x)`
Differentiate the following:
y = `sin(tan(sqrt(sinx)))`
Differentiate the following:
y = `sin^-1 ((1 - x^2)/(1 + x^2))`
Find the derivatives of the following:
tan (x + y) + tan (x – y) = x
Find the derivatives of the following:
`tan^-1 = ((6x)/(1 - 9x^2))`
Find the derivatives of the following:
Find the derivative with `tan^-1 ((sinx)/(1 + cos x))` with respect to `tan^-1 ((cosx)/(1 + sinx))`
Find the derivatives of the following:
If y = sin–1x then find y”
Find the derivatives of the following:
If y = `(sin^-1 x)/sqrt(1 - x^2)`, show that (1 – x2)y2 – 3xy1 – y = 0
Choose the correct alternative:
If x = a sin θ and y = b cos θ, then `("d"^2y)/("d"x^2)` is
Choose the correct alternative:
If y = `(1 - x)^2/x^2`, then `("d"y)/("d"x)` is