Advertisements
Advertisements
प्रश्न
Find the derivatives of the following:
Find the derivative with `tan^-1 ((sinx)/(1 + cos x))` with respect to `tan^-1 ((cosx)/(1 + sinx))`
उत्तर
Let u = `tan^-1 ((sinx)/(1 + cos x))`
= `tan^-1 ((2 sin x/2 cos x/2)/(2 cos ^2 x/2))`
= `tan^-1 ((sin x/2)/(cos x/2))`
= `tan^-1 (tan x/2)`
u = `x/2`
`("d"u)/("d"x) = 1/2` .......(1)
v = `tan^-1 [cos x/(1 + sin x)]`
= `tan^-1 [(cos^2 x/2 - sin^2 x/2)/(cos^2 x/2 + sin^2 x/2 + 2 sin x/2 cos x/2)]`
= `tan^-1 [((cos x/2 + sin x/2)(cos x/2 - sin x/2))/(cos x/2 + sin x/2)^2]`
= `tan^-1 [(cos x/2 - sin x/2)/(cos x/2 + sin x/2)]`
= `tan^-1 [(cos x/2 (1 - (sin x/2)/(cos x/2)))/(cos x/2 (1 + (sin x/2)/(cos x/2)))]`
= `tan^-1 [(1 - tan x/2)/(1 + tan x/2)]`
= `tan^-1 [(tan pi/4 - tan pi/2)/(1 + tan pi/4 * tan x/2)]`
= `tan^-1 [tan (pi/4 - x/2)]`
v = `pi/4 - x/2`
`("d"v)/("d"x) = - 1/2` .........(2)
From equations (1) and (2)
`(("d"u)/("d"x))/(("d"v)/("d"x)) = (1/2)/(- 1/2)`
`("d"u)/("d"v)` = – 1
`("d"tan^-1 [(sin x)/(1 + cos x)])/("d"tan^-1 [cos x/(1 + sin x)])` = – 1
APPEARS IN
संबंधित प्रश्न
Find the derivatives of the following functions with respect to corresponding independent variables:
y = log10 x
Find the derivatives of the following functions with respect to corresponding independent variables:
Draw the function f'(x) if f(x) = 2x2 – 5x + 3
Differentiate the following:
y = (x2 + 4x + 6)5
Differentiate the following:
y = tan 3x
Differentiate the following:
y = `root(3)(1 + x^3)`
Differentiate the following:
y = `"e"^sqrt(x)`
Differentiate the following:
f(t) = `root(3)(1 + tan "t")`
Differentiate the following:
y = (2x – 5)4 (8x2 – 5)–3
Differentiate the following:
y = `(x^2 + 1) root(3)(x^2 + 2)`
Differentiate the following:
y = `(sin^2x)/cos x`
Differentiate the following:
y = (1 + cos2)6
Find the derivatives of the following:
y = `x^(cosx)`
Find the derivatives of the following:
`x^2/"a"^2 + y^2/"b"^2` = 1
Find the derivatives of the following:
If cos(xy) = x, show that `(-(1 + ysin(xy)))/(xsiny)`
Find the derivatives of the following:
`cos^-1 ((1 - x^2)/(1 + x^2))`
Find the derivatives of the following:
sin-1 (3x – 4x3)
Find the derivatives of the following:
If y = `(sin^-1 x)/sqrt(1 - x^2)`, show that (1 – x2)y2 – 3xy1 – y = 0
Choose the correct alternative:
If y = `1/4 u^4`, u = `2/3 x^3 + 5`, then `("d"y)/("d"x)` is
Choose the correct alternative:
If x = a sin θ and y = b cos θ, then `("d"^2y)/("d"x^2)` is