Advertisements
Advertisements
प्रश्न
Find the derivatives of the following functions with respect to corresponding independent variables:
y = tan θ (sin θ + cos θ)
उत्तर
y = tan θ (sin θ + cos θ)
`("d"y)/("d"x)` = tan θ (cos θ – sin θ) + (sin θ + cos 0) sec2 θ
= tan θ cos θ – tan θ sin θ + sin θ sec2θ + cos θ sec2θ
= `tan theta cos theta - tan theta sin theta + sintheta/(cos^2theta) + costheta/(cos^2theta)`
= `sin theta/cos theta cos theta - sin theta/cos theta sin theta + sin theta/cos theta * 1/cos theta + 1/costheta`
= sin θ – sin2θ sec θ + tan θ sec θ + sec θ
= sin θ + (1 – sin2θ) sec θ + sec θ tan θ
= `sin theta + cos^2theta xx 1/cos theta + sectheta tan theta`
= sin θ + cos θ + sec θ tan θ
APPEARS IN
संबंधित प्रश्न
Find the derivatives of the following functions with respect to corresponding independent variables:
f(x) = x – 3 sin x
Find the derivatives of the following functions with respect to corresponding independent variables:
y = `sinx/x^2`
Differentiate the following:
y = tan 3x
Differentiate the following:
y = `"e"^sqrt(x)`
Differentiate the following:
y = cos (a3 + x3)
Differentiate the following:
y = `x"e"^(-x^2)`
Differentiate the following:
y = sin2(cos kx)
Differentiate the following:
y = `"e"^(xcosx)`
Differentiate the following:
y = `sqrt(x + sqrt(x + sqrt(x)`
Find the derivatives of the following:
`cos^-1 ((1 - x^2)/(1 + x^2))`
Find the derivatives of the following:
If u = `tan^-1 (sqrt(1 + x^2) - 1)/x` and v = `tan^-1 x`, find `("d"u)/("d"v)`
Find the derivatives of the following:
If sin y = x sin(a + y), the prove that `("d"y)/("d"x) = (sin^2("a" + y))/sin"a"`, a ≠ nπ
Choose the correct alternative:
If y = cos (sin x2), then `("d"y)/("d"x)` at x = `sqrt(pi/2)` is
Choose the correct alternative:
`"d"/("d"x) ("e"^(x + 5log x))` is
Choose the correct alternative:
x = `(1 - "t"^2)/(1 + "t"^2)`, y = `(2"t")/(1 + "t"^2)` then `("d"y)/("d"x)` is
Choose the correct alternative:
The differential coefficient of `log_10 x` with respect to `log_x 10` is
Choose the correct alternative:
If f(x) = `{{:(2"a" - x, "for" - "a" < x < "a"),(3x - 2"a", "for" x ≥ "a"):}` , then which one of the following is true?
Choose the correct alternative:
If f(x) = `{{:("a"x^2 - "b"",", - 1 < x < 1),(1/|x|",", "elsewhere"):}` is differentiable at x = 1, then