Advertisements
Advertisements
प्रश्न
Find the derivatives of the following functions with respect to corresponding independent variables:
y = cosec x . cot x
उत्तर
y = u v
⇒ y’ = uv’ + vu’
u = cosec x
⇒ u’ = – cosec x cot x
v = cot x
⇒ v’ = – cosec2 x
`("d"y)/("d"x)` = (cosec x)(– cosec2x) + cot x(– coseç x cot x)
= cosec3x – cosec x cot2x
= – cosec x (cosec2x + cot2x)
= `- 1/sinx (1/(sin^2x)+ (cos^2x)/(sin^2x))`
= `- ((1 + cos^2x))/(sinx sin^2x)`
= `- ((1 + cos^2x))/(sin^x)`
APPEARS IN
संबंधित प्रश्न
Find the derivatives of the following functions with respect to corresponding independent variables:
g(t) = t3 cos t
Find the derivatives of the following functions with respect to corresponding independent variables:
Draw the function f'(x) if f(x) = 2x2 – 5x + 3
Differentiate the following:
y = (x2 + 4x + 6)5
Differentiate the following:
y = tan 3x
Differentiate the following:
y = cos (tan x)
Differentiate the following:
y = `root(3)(1 + x^3)`
Differentiate the following:
y = `(x^2 + 1) root(3)(x^2 + 2)`
Differentiate the following:
f(x) = `x/sqrt(7 - 3x)`
Differentiate the following:
y = `(sin^2x)/cos x`
Find the derivatives of the following:
`tan^-1 = ((6x)/(1 - 9x^2))`
Find the derivatives of the following:
`tan^-1 ((cos x + sin x)/(cos x - sin x))`
Find the derivatives of the following:
If y = sin–1x then find y”
Choose the correct alternative:
If y = cos (sin x2), then `("d"y)/("d"x)` at x = `sqrt(pi/2)` is
Choose the correct alternative:
If f(x) = x tan-1x then f'(1) is
Choose the correct alternative:
`"d"/("d"x) ("e"^(x + 5log x))` is
Choose the correct alternative:
x = `(1 - "t"^2)/(1 + "t"^2)`, y = `(2"t")/(1 + "t"^2)` then `("d"y)/("d"x)` is
Choose the correct alternative:
If f(x) = `{{:(x - 5, "if" x ≤ 1),(4x^2 - 9, "if" 1 < x < 2),(3x + 4, "if" x ≥ 2):}` , then the right hand derivative of f(x) at x = 2 is
Choose the correct alternative:
If f(x) = `{{:("a"x^2 - "b"",", - 1 < x < 1),(1/|x|",", "elsewhere"):}` is differentiable at x = 1, then