Advertisements
Advertisements
प्रश्न
Differentiate the following:
y = `x"e"^(-x^2)`
उत्तर
y = `x"e"^(-x^2)`
y = uv where u = x and v = `"e"^(-x^2)`
Now u’ = 1 and v’ = `"e"^(-x^2) (- 2x)`
v’ = `- 2x"e"^(-x^2)`
Now y = uv
⇒ y’ = uv’ + vu’
(i..e.) `("d"y)/("d"x) = x[- 2x"e"^(-x^2)] + "e"^(-x^2) (1)`
= `"e"^(- x^2) (1 - 2x^2)`
APPEARS IN
संबंधित प्रश्न
Find the derivatives of the following functions with respect to corresponding independent variables:
y = sin x + cos x
Find the derivatives of the following functions with respect to corresponding independent variables:
y = `x/(sin x + cosx)`
Find the derivatives of the following functions with respect to corresponding independent variables:
y = `(tanx - 1)/secx`
Find the derivatives of the following functions with respect to corresponding independent variables:
y = x sin x cos x
Differentiate the following:
y = cos (tan x)
Differentiate the following:
F(x) = (x3 + 4x)7
Differentiate the following:
y = cos (a3 + x3)
Differentiate the following:
y = `"e"^(3x)/(1 + "e"^x`
Find the derivatives of the following:
(cos x)log x
Find the derivatives of the following:
`cos[2tan^-1 sqrt((1 - x)/(1 + x))]`
Find the derivatives of the following:
x = `(1 - "t"^2)/(1 + "t"^2)`, y = `(2"t")/(1 + "t"^2)`
Find the derivatives of the following:
`tan^-1 ((cos x + sin x)/(cos x - sin x))`
Find the derivatives of the following:
Find the derivative of sin x2 with respect to x2
Find the derivatives of the following:
If u = `tan^-1 (sqrt(1 + x^2) - 1)/x` and v = `tan^-1 x`, find `("d"u)/("d"v)`
Find the derivatives of the following:
If sin y = x sin(a + y), the prove that `("d"y)/("d"x) = (sin^2("a" + y))/sin"a"`, a ≠ nπ
Choose the correct alternative:
`"d"/("d"x) ("e"^(x + 5log x))` is
Choose the correct alternative:
x = `(1 - "t"^2)/(1 + "t"^2)`, y = `(2"t")/(1 + "t"^2)` then `("d"y)/("d"x)` is
Choose the correct alternative:
If f(x) = `{{:(x - 5, "if" x ≤ 1),(4x^2 - 9, "if" 1 < x < 2),(3x + 4, "if" x ≥ 2):}` , then the right hand derivative of f(x) at x = 2 is
Choose the correct alternative:
If f(x) = `{{:("a"x^2 - "b"",", - 1 < x < 1),(1/|x|",", "elsewhere"):}` is differentiable at x = 1, then