Advertisements
Advertisements
Question
Differentiate the following:
y = `x"e"^(-x^2)`
Solution
y = `x"e"^(-x^2)`
y = uv where u = x and v = `"e"^(-x^2)`
Now u’ = 1 and v’ = `"e"^(-x^2) (- 2x)`
v’ = `- 2x"e"^(-x^2)`
Now y = uv
⇒ y’ = uv’ + vu’
(i..e.) `("d"y)/("d"x) = x[- 2x"e"^(-x^2)] + "e"^(-x^2) (1)`
= `"e"^(- x^2) (1 - 2x^2)`
APPEARS IN
RELATED QUESTIONS
Find the derivatives of the following functions with respect to corresponding independent variables:
y = (x2 + 5) log(1 + x) e–3x
Differentiate the following:
y = cos (tan x)
Differentiate the following:
y = tan (cos x)
Differentiate the following:
y = `5^((-1)/x)`
Differentiate the following:
y = `sqrt(1 + 2tanx)`
Differentiate the following:
y = `sin^-1 ((1 - x^2)/(1 + x^2))`
Find the derivatives of the following:
y = `x^(logx) + (logx)^x`
Find the derivatives of the following:
`sqrt(x) = "e"^((x - y))`
Find the derivatives of the following:
tan (x + y) + tan (x – y) = x
Find the derivatives of the following:
`tan^-1sqrt((1 - cos x)/(1 + cos x)`
Find the derivatives of the following:
x = a (cos t + t sin t); y = a (sin t – t cos t)
Find the derivatives of the following:
`cos^-1 ((1 - x^2)/(1 + x^2))`
Find the derivatives of the following:
If y = etan–1x, show that (1 + x2)y” + (2x – 1)y’ = 0
Find the derivatives of the following:
If y = `(cos^-1 x)^2`, prove that `(1 - x^2) ("d"^2y)/("d"x)^2 - x ("d"y)/("d"x) - 2` = 0. Hence find y2 when x = 0
Choose the correct alternative:
If y = `1/("a" - z)`, then `("d"z)/("d"y)` is
Choose the correct alternative:
If y = cos (sin x2), then `("d"y)/("d"x)` at x = `sqrt(pi/2)` is
Choose the correct alternative:
If f(x) = x tan-1x then f'(1) is
Choose the correct alternative:
If y = `(1 - x)^2/x^2`, then `("d"y)/("d"x)` is