Advertisements
Advertisements
प्रश्न
Find the derivatives of the following functions with respect to corresponding independent variables:
y = e-x . log x
उत्तर
y = e-x logx = uv (say)
Here u = e-x and v = log x
⇒ u’ = -e-x and v’ = `1/x`
Now y = uv
⇒ y’ = uv’ + vu’
(i.e.) `("d"y)/("d"x) = "e"^-x (1/x) + log x(-"e"^-x)`
`("d"y)/("d"x) = "e"^-x (1/x - log x)`
APPEARS IN
संबंधित प्रश्न
Find the derivatives of the following functions with respect to corresponding independent variables:
y = sin x + cos x
Find the derivatives of the following functions with respect to corresponding independent variables:
y = `sinx/(1 + cosx)`
Find the derivatives of the following functions with respect to corresponding independent variables:
y = cosec x . cot x
Differentiate the following:
y = `"e"^sqrt(x)`
Differentiate the following:
y = e–mx
Differentiate the following:
y = (2x – 5)4 (8x2 – 5)–3
Differentiate the following:
y = `sqrt(1 + 2tanx)`
Differentiate the following:
y = sin2(cos kx)
Differentiate the following:
y = `sqrt(x +sqrt(x)`
Differentiate the following:
y = `sin^-1 ((1 - x^2)/(1 + x^2))`
Find the derivatives of the following:
y = `x^(logx) + (logx)^x`
Find the derivatives of the following:
`x^2/"a"^2 + y^2/"b"^2` = 1
Find the derivatives of the following:
x = a (cos t + t sin t); y = a (sin t – t cos t)
Find the derivatives of the following:
`cos^-1 ((1 - x^2)/(1 + x^2))`
Find the derivatives of the following:
If y = sin–1x then find y”
Find the derivatives of the following:
If x = a(θ + sin θ), y = a(1 – cos θ) then prove that at θ = `pi/2`, yn = `1/"a"`
Choose the correct alternative:
If y = `1/("a" - z)`, then `("d"z)/("d"y)` is
Choose the correct alternative:
x = `(1 - "t"^2)/(1 + "t"^2)`, y = `(2"t")/(1 + "t"^2)` then `("d"y)/("d"x)` is
Choose the correct alternative:
If x = a sin θ and y = b cos θ, then `("d"^2y)/("d"x^2)` is
Choose the correct alternative:
If y = `(1 - x)^2/x^2`, then `("d"y)/("d"x)` is