Advertisements
Advertisements
प्रश्न
Find the derivatives of the following functions with respect to corresponding independent variables:
y = ex sin x
उत्तर
y = ex sin x
⇒ y = uv’ + vu’
Now u = ex
⇒ u’ = `("d"u)/("d"x) "e"^x`
v = sin x
⇒ v’ = `("d"v)/("d"x)` cos x
i.e. y’ = ex (cos x) + sin x (ex)
= ex [sin x + cos x]
APPEARS IN
संबंधित प्रश्न
Find the derivatives of the following functions with respect to corresponding independent variables:
y = sin x + cos x
Find the derivatives of the following functions with respect to corresponding independent variables:
g(t) = t3 cos t
Find the derivatives of the following functions with respect to corresponding independent variables:
y = `tan x/x`
Find the derivatives of the following functions with respect to corresponding independent variables:
y = `x/(sin x + cosx)`
Find the derivatives of the following functions with respect to corresponding independent variables:
y = tan θ (sin θ + cos θ)
Differentiate the following:
y = `x"e"^(-x^2)`
Differentiate the following:
f(x) = `x/sqrt(7 - 3x)`
Differentiate the following:
y = tan (cos x)
Differentiate the following:
y = `(sin^2x)/cos x`
Differentiate the following:
y = `5^((-1)/x)`
Differentiate the following:
y = `sqrt(x +sqrt(x)`
Find the derivatives of the following:
(cos x)log x
Find the derivatives of the following:
`tan^-1sqrt((1 - cos x)/(1 + cos x)`
Find the derivatives of the following:
`tan^-1 = ((6x)/(1 - 9x^2))`
Find the derivatives of the following:
Find the derivative with `tan^-1 ((sinx)/(1 + cos x))` with respect to `tan^-1 ((cosx)/(1 + sinx))`
Find the derivatives of the following:
If x = a(θ + sin θ), y = a(1 – cos θ) then prove that at θ = `pi/2`, yn = `1/"a"`
Choose the correct alternative:
If y = `1/("a" - z)`, then `("d"z)/("d"y)` is
Choose the correct alternative:
If f(x) = `{{:(x - 5, "if" x ≤ 1),(4x^2 - 9, "if" 1 < x < 2),(3x + 4, "if" x ≥ 2):}` , then the right hand derivative of f(x) at x = 2 is
Choose the correct alternative:
If f(x) = `{{:("a"x^2 - "b"",", - 1 < x < 1),(1/|x|",", "elsewhere"):}` is differentiable at x = 1, then
Choose the correct alternative:
The number of points in R in which the function f(x) = |x – 1| + |x – 3| + sin x is not differentiable, is