Advertisements
Advertisements
प्रश्न
Find the derivatives of the following functions with respect to corresponding independent variables:
y = `tan x/x`
उत्तर
y = `tanx/x`
`("d"y)/("d"x) = (x * sec^2x - tan x * 1)/x^2`
`("d"y)/("d"x) = (x sec^2x - tan x)/x^2`
APPEARS IN
संबंधित प्रश्न
Find the derivatives of the following functions with respect to corresponding independent variables:
g(t) = t3 cos t
Find the derivatives of the following functions with respect to corresponding independent variables:
y = tan θ (sin θ + cos θ)
Find the derivatives of the following functions with respect to corresponding independent variables:
y = e-x . log x
Differentiate the following:
y = (x2 + 4x + 6)5
Differentiate the following:
y = `"e"^sqrt(x)`
Differentiate the following:
y = cos (a3 + x3)
Differentiate the following:
y = (2x – 5)4 (8x2 – 5)–3
Differentiate the following:
f(x) = `x/sqrt(7 - 3x)`
Differentiate the following:
y = `(sin^2x)/cos x`
Differentiate the following:
y = `sqrt(1 + 2tanx)`
Differentiate the following:
y = (1 + cos2)6
Differentiate the following:
y = `sin(tan(sqrt(sinx)))`
Find the derivatives of the following:
tan (x + y) + tan (x – y) = x
Find the derivatives of the following:
If cos(xy) = x, show that `(-(1 + ysin(xy)))/(xsiny)`
Find the derivatives of the following:
x = a (cos t + t sin t); y = a (sin t – t cos t)
Find the derivatives of the following:
`cos^-1 ((1 - x^2)/(1 + x^2))`
Find the derivatives of the following:
Find the derivative with `tan^-1 ((sinx)/(1 + cos x))` with respect to `tan^-1 ((cosx)/(1 + sinx))`
Find the derivatives of the following:
If y = sin–1x then find y”
Choose the correct alternative:
If y = `1/4 u^4`, u = `2/3 x^3 + 5`, then `("d"y)/("d"x)` is
Choose the correct alternative:
If y = `(1 - x)^2/x^2`, then `("d"y)/("d"x)` is