Advertisements
Advertisements
प्रश्न
Differentiate the following:
y = `sin(tan(sqrt(sinx)))`
उत्तर
y = `sin(tan(sqrt(sinx)))`
y = f(g(x))
`("d"y)/("d"x)` = f'(g(x)) . g'(x)
`("d"y)/("d"x) = cos(tan(sqrt(sinx))) sec^2(sqrt(sinx)) xx 1/2(sinx)^(1/2 - 1) cos x`
`("d"y)/("d"x) = 1/2 cos (tan(sqrt(sinx))) sec^2 (sqrt(sinx)) (sinx)^(- 1/2) cosx`
`("d"y)/("d"x) = (cos(tan(sqrt(sinx))) sec^2(sqrt(sinx)) cosx)/(2(sinx)^(1/2)`
APPEARS IN
संबंधित प्रश्न
Find the derivatives of the following functions with respect to corresponding independent variables:
y = `sinx/(1 + cosx)`
Find the derivatives of the following functions with respect to corresponding independent variables:
y = `(tanx - 1)/secx`
Find the derivatives of the following functions with respect to corresponding independent variables:
y = tan θ (sin θ + cos θ)
Find the derivatives of the following functions with respect to corresponding independent variables:
y = cosec x . cot x
Find the derivatives of the following functions with respect to corresponding independent variables:
y = sin x0
Find the derivatives of the following functions with respect to corresponding independent variables:
y = log10 x
Differentiate the following:
y = tan 3x
Differentiate the following:
y = sin (ex)
Differentiate the following:
F(x) = (x3 + 4x)7
Differentiate the following:
y = sin2(cos kx)
Differentiate the following:
y = `sqrt(x +sqrt(x)`
Find the derivatives of the following:
`sqrt(x) = "e"^((x - y))`
Find the derivatives of the following:
`tan^-1 = ((6x)/(1 - 9x^2))`
Find the derivatives of the following:
`tan^-1 ((cos x + sin x)/(cos x - sin x))`
Find the derivatives of the following:
If y = etan–1x, show that (1 + x2)y” + (2x – 1)y’ = 0
Choose the correct alternative:
If y = `1/4 u^4`, u = `2/3 x^3 + 5`, then `("d"y)/("d"x)` is
Choose the correct alternative:
If f(x) = x tan-1x then f'(1) is
Choose the correct alternative:
If y = `(1 - x)^2/x^2`, then `("d"y)/("d"x)` is
Choose the correct alternative:
If f(x) = `{{:(2"a" - x, "for" - "a" < x < "a"),(3x - 2"a", "for" x ≥ "a"):}` , then which one of the following is true?