Advertisements
Advertisements
प्रश्न
Draw the graph of the following function:
f(x) = |x – 2|
उत्तर
Let y = f(x) = |x – 2|
f(x) = `{(x - 2 if x - 2 >= 0),(- (x - 2) if x - 2 < 0):}`
f(x) = `{(x - 2 if x >= 2),(- x + 2 if x < 2):}`
y = x - 2, x ≥ 2
x | 2 | 3 | 4 | 5 |
y | 0 | 1 | 2 | 3 |
y = - x + 2, x < 2
x | 0 | -1 | -2 | -3 |
y | 2 | 3 | 4 | 5 |
Plot the points (2, 0), (3, 1) (4, 2), (5, 3), (0, 2), (-1, 3), (-2, 4), (-3, 5) and draw a line.
The graph is as shown in the figure.
APPEARS IN
संबंधित प्रश्न
If f(x) = `x^3 - 1/x^3`, then show that `"f"(x) + "f"(1/x)` = 0
If f(x) = `((x + 1)/(x - 1))`, then prove that f(f(x)) = x.
If f(x) = ex and g(x) = loge x then find (fg)(1).
If f(x) = ex and g(x) = loge x then find (3f) (1).
Draw the graph of the following function:
f(x) = 16 – x2
Draw the graph of the following function:
f(x) = e2x
If f(x) = x2 – x + 1 then f(x + 1) is:
The minimum value of the function f(x) = |x| is:
f(x) = -5, for all x ∈ R is a:
The range of f(x) = |x|, for all x ∈ R is: