Advertisements
Advertisements
प्रश्न
If f(x) = `x^3 - 1/x^3`, then show that `"f"(x) + "f"(1/x)` = 0
उत्तर
f(x) = `x^3 - 1/x^3` .....(1)
`"f"(1/x) = (1/x)^3 - 1/(1/x)^3`
`= 1/x^3 - x^3` ....(2)
(1) + (2) gives
`"f"(x) + "f"(1/x) = x^3 - 1/x^3 + 1/x^3 - x^3` = 0
Hence Proved.
APPEARS IN
संबंधित प्रश्न
Determine whether the following function is odd or even?
f(x) = `((a^x - 1)/(a^x + 1))`
Determine whether the following function is odd or even?
f(x) = sin x + cos x
For f(x) = `(x - 1)/(3x + 1)`, write the expressions of `"f"(1/x) and 1/("f"(x))`
If f(x) = ex and g(x) = loge x then find (fg)(1).
Draw the graph of the following function:
f(x) = e2x
If f(x) = x2 – x + 1 then f(x + 1) is:
The graph of y = 2x2 is passing through:
The minimum value of the function f(x) = |x| is:
Which one of the following functions has the property f(x) = `"f"(1/x)`?
The range of f(x) = |x|, for all x ∈ R is: