Advertisements
Advertisements
प्रश्न
Which one of the following functions has the property f(x) = `"f"(1/x)`?
विकल्प
f(x) = `(x^2 - 1)/x`
f(x) = `(1 - x^2)/x`
f(x) = x
f(x) = `(x^2 + 1)/x`
उत्तर
f(x) = `(x^2 + 1)/x`
Explanation:
f(x) = `"f"(1/x)`
take f(x) = `(x^2 + 1)/x`
`"f"(1/x) = ((1/x)^2 + 1)/(1/x) = (1/x^2 + 1)x`
`= (1 + x^2)/x^2 xx x`
`= (x^2 + 1)/x` = f(x)
APPEARS IN
संबंधित प्रश्न
Determine whether the following function is odd or even?
f(x) = `log (x^2 + sqrt(x^2 + 1))`
Let f be defined by f(x) = x3 – kx2 + 2x, x ∈ R. Find k, if ‘f’ is an odd function.
If f(x) = ex and g(x) = loge x then find (3f) (1).
Draw the graph of the following function:
f(x) = 16 – x2
Draw the graph of the following function:
f(x) = `|x|/x`
If f(x) = `1/(2x + 1)`, x > `-1/2`, then show that f(f(x)) = `(2x + 1)/(2x + 3)`
If f(x) = x2 – x + 1 then f(x + 1) is:
If f(x) = `{(x^2 - 4x if x >= 2),(x+2 if x < 2):}`, then f(5) is
The minimum value of the function f(x) = |x| is:
If f(x) = x2 and g(x) = 2x + 1 then (fg)(0) is: