Advertisements
Advertisements
प्रश्न
Which one of the following functions has the property f(x) = `"f"(1/x)`?
पर्याय
f(x) = `(x^2 - 1)/x`
f(x) = `(1 - x^2)/x`
f(x) = x
f(x) = `(x^2 + 1)/x`
उत्तर
f(x) = `(x^2 + 1)/x`
Explanation:
f(x) = `"f"(1/x)`
take f(x) = `(x^2 + 1)/x`
`"f"(1/x) = ((1/x)^2 + 1)/(1/x) = (1/x^2 + 1)x`
`= (1 + x^2)/x^2 xx x`
`= (x^2 + 1)/x` = f(x)
APPEARS IN
संबंधित प्रश्न
Determine whether the following function is odd or even?
f(x) = `log (x^2 + sqrt(x^2 + 1))`
If f(x) = ex and g(x) = loge x then find (f + g)(1)
If f(x) = ex and g(x) = loge x then find (3f) (1).
If f(x) = ex and g(x) = loge x then find (5g)(1).
Draw the graph of the following function:
f(x) = e-2x
If f(x) = `(1 - x)/(1 + x)` then f(-x) is equal to:
The graph of the line y = 3 is
f(x) = -5, for all x ∈ R is a:
The graph of f(x) = ex is identical to that of:
If f(x) = x2 and g(x) = 2x + 1 then (fg)(0) is: