Advertisements
Advertisements
प्रश्न
एक द्विघात बहुपद ज्ञात कीजिए, जिसके शुन्यकों के योग तथा गुणनफल क्रमशः दी गई संख्याएँ हैं:
1, 1
उत्तर
दिया है: α + β = 1, αβ = 1
चूँकि ax2 + bx + c = k[x2 - (α + β)x + αβ]
या `(ax^2 + bx + c)/k = (x^2 - 1x + 1)`
या `(ax^2 + bx + c)/k = (x^2 - x + 1)/1`
यहाँ k एक अचर पद है, तुलना करने पर k = 1
अतः ax2 + bx + c = x2 - x + 1
द्विघात बहुपद x2 - x + 1 है।
APPEARS IN
संबंधित प्रश्न
एक द्विघात बहुपद ज्ञात कीजिए, जिसके शुन्यकों के योग तथा गुणनफल क्रमशः दी गई संख्याएँ हैं:
`sqrt2, 1/3`
सत्यापित कीजिए कि निम्न त्रिघात बहुपदों के साथ दी गई संख्याएँ उसकी शून्यक हैं। निम्न स्थिति में शून्यकों और गुणांकों के बीच के संबंध को भी सत्यापित कीजिए:
`2x^3 + x^2 - 5x + 2; 1/2, 1, -2`
एक त्रिघात बहुपद प्राप्त कीजिए जिसके शून्यकों का योग, दो शून्यकों को एक साथ लेकर उनके गुणनफलों का योग तथा तीनों शून्यकों के गुणनफल क्रमशः 2, -7, -14 हों।
यदि बहुपद x4 - 6x3 - 26x2 + 138x - 35 के दो शून्यक 2 ± `sqrt3` हों, तो अन्य शून्यक ज्ञात कीजिए।
शून्यक –2 और 5 वाले बहुपदों की संख्या है
यदि एक त्रिघात बहुपद के दो शून्यकों में से प्रत्येक शून्य है, तो इसके रैखिक और अचर पद नहीं हो सकते।
यदि एक त्रिघात बहुपद x3 + ax2 − bx + c के तीनों शून्यक धनात्मक हैं, तो a, b और c में से कम से कम एक अवश्य ही ऋणेतर होगा।
k का केवल वह मान जिसके लिए द्विघात बहुपद kx2 + x + k के शून्यक बराबर है शून्यक `1/2` है।
गुणनखंडन द्वारा निम्नलिखित बहुपदों के शून्यक ज्ञात कीजिए तथा इन बहुपदों के गुणांकों और शून्यकों के बीच के संबंधों को सत्यापित कीजिए:
गुणनखंडन द्वारा निम्नलिखित बहुपदों के शून्यक ज्ञात कीजिए तथा इन बहुपदों के गुणांकों और शून्यकों के बीच के संबंधों को सत्यापित कीजिए: