हिंदी

एक गोलाकार गुब्बारे का आयतन, जिसे हवा भरकर फुलाया जा रहा है, स्थिर गति से बदल रहा है। यदि आरंभ में इस गुब्बारे की त्रिज्या 3 इकाई है और 3 सेकंड बाद 6 इकाई है, तो t सेकंड बाद उस - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

एक गोलाकार गुब्बारे का आयतन, जिसे हवा भरकर फुलाया जा रहा है, स्थिर गति से बदल रहा है। यदि आरंभ में इस गुब्बारे की त्रिज्या 3 इकाई है और 3 सेकंड बाद 6 इकाई है, तो t सेकंड बाद उस गुब्बारे की त्रिज्या ज्ञात कीजिए।

योग

उत्तर

`V = 4/3 pir^3`                  ....(1)

(1) का विभेदन करने पर, हम पाते हैं।

`(dV)/dt = 4pir^2 (dr)/dt`

अब, `(dV)/dt = a`

⇒ `4pir^2 = (dr)/dt = a`               ....(2)

दोनों पक्षों (2) को एकीकृत करने पर, हम पाते हैं,

⇒ `int 4 pi r^2 dr = int a  dt`

⇒ `4pi r^3/3 = at + C`

जब t = 0, r = 3

∴ `(4pi (3)^3)/3 = C`

⇒ C = 36π

∴ `(4 pir^3)/3 = at + 36 pi`

जब t = 3, r = 6 then

`(4pi(6)^3)/3 = 3a + 36 pi`

⇒ `(4pi xx 36 xx 6)/3`

= 3a + 36π

⇒ 288π = 3a + 36π

⇒ 96π = a + 12π

⇒ a = 84π

अत:, `(4pir^3)/3 = 84pi t + 36 pi`

⇒ `(4r^3)/3 = 84t + 36`

⇒ `r^3/3 = 21t + 9`

⇒ `r^3 = 63t + 27`

⇒ `r = (63t + 27)^(1/3)`

shaalaa.com
प्रथम कोटि एवं प्रथम घात के अवकाल समीकरणों को हल करने की विधियाँ - पृथक्करणीय चर वाले अवकल समीकरण
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: अवकल समीकरण - प्रश्नावली 9.4 [पृष्ठ ४१३]

APPEARS IN

एनसीईआरटी Mathematics - Part 1 and 2 [Hindi] Class 12
अध्याय 9 अवकल समीकरण
प्रश्नावली 9.4 | Q 19. | पृष्ठ ४१३

संबंधित प्रश्न

निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए।

`dy/dx = (1 - cos x)/(1 + cos  x)`


निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए।

`dy/dx sqrt(4 - y^2)  (-2 < y < 2)`


निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए।

`dy/dx + y = 1 (y ne 1)`


निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए।

sec2 x tan y dx + sec2 y tan x dy = 0


निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए।

(ex + e-x) dy - (ex - e-x) dx = 0


निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए।

`dy/dx` = (1 + x2) (1 + y2)


निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए।

`x^5  dy/dx = - y^5`


निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए।

`dy/dx = sin^-1 x`


निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए।

`(x^3 + x^2 + x + 1) dy/dx = 2x^2 + x`; y = 1 यदि x = 0


निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए।

`"dy"/"dx"` = y tan x ; y = 1 यदि x = 0


बिंदु (0, 0) से गुजरने वाले एक ऐसे वक्र का समीकरण ज्ञात कीजिए जिसका अवकल समीकरण y’ = ex sin x है।


अवकल समीकरण `xy  dy/dx = (x + 2)(y + 2`) के लिए बिंदु (1, -1) से गुजरने वाला वक्र ज्ञात कीजिए।


बिंदु (0, -2) से गुजरने वाले एक ऐसे वक्र का समीकरण ज्ञात कीजिए जिसके किसी बिंदु (x, y) पर स्पर्श रेखा की प्रवणता और उस बिंदु के y निर्देशांक का गुणनफल उस बिंदु के x निर्देशांक के बराबर है।


एक वक्र के किसी बिंदु (x, y) पर स्पर्श रेखा की प्रवणता, स्पर्श बिंदु को, बिंदु (-4, -3) से मिलाने वाले रेखाखंड प्रवणता की दुगनी है। यदि यह वक्र बिंदु (-2, 1)से गुजरता हो तो इस वक्र का समीकरण ज्ञात कीजिए।


किसी बैंक में मूलधन की वृद्धि r % वार्षिक की दर से होती है। यदि 100 रुपये 10 वर्षों में दुगने हो जाते हैं, तो r का मान ज्ञात कीजिए। (loge 2 = 0.6931).


किसी बैंक में मूलधन की वृद्धि 5% वार्षिक की दर से होती है। इस बैंक में 1000 रुपये जमा कराये जाते हैं। ज्ञात कीजिए कि 10 वर्ष बाद यह राशि कितनी हो जाएगी? (e0.5 = 1.648)


किसी जीवाणु समूह में जीवाणुओं की संख्या 1,00,000 है। 2 घंटो में इनकी संख्या में 10% की वृद्धि होती है। कितने घंटो में जीवाणुओं की संख्या 2,00,000 हो जाएगी। यदि जीवाणुओं के वृद्धि की दर उनमें उपस्थित संख्या के समानुपाती है।


अवकल समीकरण `dy/dx = e^(x+y)`  का व्यापक हल है:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×