Advertisements
Advertisements
प्रश्न
अवकल समीकरण `xy dy/dx = (x + 2)(y + 2`) के लिए बिंदु (1, -1) से गुजरने वाला वक्र ज्ञात कीजिए।
उत्तर
दिया है, xy `dy/dx` = (x + 2)(y + 2)
`=> y/((y + 2)) dy = (x + 2)/x dx`
`=> (1 - 2/(y + 2)) dy = (1 + 2/x) dx`
समाकलन करने पर,
`int (1 - 2/(y + 2)) dy = int (1 + 2/x) dx`
y - 2 log (y + 2) = x + 2 log x + C …(i)
∵ वक्र बिंदु (1, -1) से गुजरता है अतः x = 1, y = -1
∴ -1 - 2 log (1) = 1 + 2 log (1) + C [∵ log 1 = 0]
-1 = 1 + C
⇒ C = -2
C = - 2 समीकरण (i) में रखने पर,
y - 2 log (y + 2) = x + 2 log x + 2
⇒ y - x + 2 = 2 log x + 2 log (y + 2)
⇒ y - x’ + 2 = 2 [log x (y + 2)]
y - x + 2 = log [x2 (y + 2)2]
APPEARS IN
संबंधित प्रश्न
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए।
`dy/dx = (1 - cos x)/(1 + cos x)`
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए।
`dy/dx sqrt(4 - y^2) (-2 < y < 2)`
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए।
`dy/dx + y = 1 (y ne 1)`
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए।
(ex + e-x) dy - (ex - e-x) dx = 0
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए।
y log y dx - x dy = 0
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए।
`x^5 dy/dx = - y^5`
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए।
`dy/dx = sin^-1 x`
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए।
ex tan y dx + (1 - ex) sec2 y dy = 0
निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए।
`(x^3 + x^2 + x + 1) dy/dx = 2x^2 + x`; y = 1 यदि x = 0
निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए।
`x (x^2 - 1) dy/dx = 1` ; y = 0 यदि x = 2
निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए।
`cos (dy/dx) = a (a in R)`: y = 1 यदि x = 0
निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए।
`"dy"/"dx"` = y tan x ; y = 1 यदि x = 0
बिंदु (0, 0) से गुजरने वाले एक ऐसे वक्र का समीकरण ज्ञात कीजिए जिसका अवकल समीकरण y’ = ex sin x है।
बिंदु (0, -2) से गुजरने वाले एक ऐसे वक्र का समीकरण ज्ञात कीजिए जिसके किसी बिंदु (x, y) पर स्पर्श रेखा की प्रवणता और उस बिंदु के y निर्देशांक का गुणनफल उस बिंदु के x निर्देशांक के बराबर है।
एक वक्र के किसी बिंदु (x, y) पर स्पर्श रेखा की प्रवणता, स्पर्श बिंदु को, बिंदु (-4, -3) से मिलाने वाले रेखाखंड प्रवणता की दुगनी है। यदि यह वक्र बिंदु (-2, 1)से गुजरता हो तो इस वक्र का समीकरण ज्ञात कीजिए।
किसी बैंक में मूलधन की वृद्धि r % वार्षिक की दर से होती है। यदि 100 रुपये 10 वर्षों में दुगने हो जाते हैं, तो r का मान ज्ञात कीजिए। (loge 2 = 0.6931).
किसी बैंक में मूलधन की वृद्धि 5% वार्षिक की दर से होती है। इस बैंक में 1000 रुपये जमा कराये जाते हैं। ज्ञात कीजिए कि 10 वर्ष बाद यह राशि कितनी हो जाएगी? (e0.5 = 1.648)
अवकल समीकरण `dy/dx = e^(x+y)` का व्यापक हल है: