हिंदी

बिंदु (0, 0) से गुजरने वाले एक ऐसे वक्र का समीकरण ज्ञात कीजिए जिसका अवकल समीकरण y’ = ex sin x है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

बिंदु (0, 0) से गुजरने वाले एक ऐसे वक्र का समीकरण ज्ञात कीजिए जिसका अवकल समीकरण y’ = ex sin x है।

योग

उत्तर १

दिया है y’ = ex sin x

या `dy/dx = e^x sin x`

⇒ dy = ex sin x dx                                .....(i)

समाकलन करने पर,

`int 1. dy = int e^x  sin x  dx`

y `= 1/2  e^x (sin x - cos x)` = C                ...... (ii)

तब समीकरण (ii) से

`0 = 1/2  e^0` (sin 0 - cos 0 )+ C

`0 = 1/2` (0 - 1) + C ⇒ C `= 1/2`

C `= 1/2` समीकरण (ii) में रखने पर,

y `= 1/2  e^x (sin x - cos x) + 1/2`

y `= 1/2 [e^x (sin x - cos x) + 1]`

2y - 1 `= e^x (sin x - cos x)`

shaalaa.com

उत्तर २

हमारे पास है,

y' = ex sin x

⇒ `dy/dx = e^x sin x`

⇒ `dy = e^x sin x dx`                    ....(1)

दोनों पक्षों (1) को एकीकृत करने पर, हम प्राप्त करते हैं।

`int dy = inte^x sin x dx`

⇒ `y = -e^x cos x + int e^x cos x dx`

⇒ `y = -e^x cos x + e^x sin x - int e^x sin x dx`

⇒ `y = - e^x cos x +e^x sin x - y + C`

⇒ `2y = -e^x cos x + e^x sin x + C`

As pint (0, 0) lies on it, i.e., x = 0, y = 0

∴ 0 = -e0 + C

⇒ C = 1

∴ अभीष्ट समीकरण है,

2y = -ex  cos x + ex sin x + 1

अत:, 2y - 1 = ex (sin x - cos x)

shaalaa.com
प्रथम कोटि एवं प्रथम घात के अवकाल समीकरणों को हल करने की विधियाँ - पृथक्करणीय चर वाले अवकल समीकरण
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: अवकल समीकरण - प्रश्नावली 9.4 [पृष्ठ ४१३]

APPEARS IN

एनसीईआरटी Mathematics - Part 1 and 2 [Hindi] Class 12
अध्याय 9 अवकल समीकरण
प्रश्नावली 9.4 | Q 15. | पृष्ठ ४१३

संबंधित प्रश्न

निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए।

`dy/dx = (1 - cos x)/(1 + cos  x)`


निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए।

`dy/dx sqrt(4 - y^2)  (-2 < y < 2)`


निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए।

`dy/dx + y = 1 (y ne 1)`


निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए।

sec2 x tan y dx + sec2 y tan x dy = 0


निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए।

`dy/dx` = (1 + x2) (1 + y2)


निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए।

y log y dx - x dy = 0


निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए।

`x^5  dy/dx = - y^5`


निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए।

`dy/dx = sin^-1 x`


निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए।

ex tan y dx + (1 - ex) sec2 y dy = 0


निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए।

`x (x^2 - 1) dy/dx = 1` ; y = 0 यदि x = 2


निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए।

`cos (dy/dx) = a (a in R)`: y = 1 यदि x = 0


निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए।

`"dy"/"dx"` = y tan x ; y = 1 यदि x = 0


अवकल समीकरण `xy  dy/dx = (x + 2)(y + 2`) के लिए बिंदु (1, -1) से गुजरने वाला वक्र ज्ञात कीजिए।


एक वक्र के किसी बिंदु (x, y) पर स्पर्श रेखा की प्रवणता, स्पर्श बिंदु को, बिंदु (-4, -3) से मिलाने वाले रेखाखंड प्रवणता की दुगनी है। यदि यह वक्र बिंदु (-2, 1)से गुजरता हो तो इस वक्र का समीकरण ज्ञात कीजिए।


एक गोलाकार गुब्बारे का आयतन, जिसे हवा भरकर फुलाया जा रहा है, स्थिर गति से बदल रहा है। यदि आरंभ में इस गुब्बारे की त्रिज्या 3 इकाई है और 3 सेकंड बाद 6 इकाई है, तो t सेकंड बाद उस गुब्बारे की त्रिज्या ज्ञात कीजिए।


किसी बैंक में मूलधन की वृद्धि r % वार्षिक की दर से होती है। यदि 100 रुपये 10 वर्षों में दुगने हो जाते हैं, तो r का मान ज्ञात कीजिए। (loge 2 = 0.6931).


किसी बैंक में मूलधन की वृद्धि 5% वार्षिक की दर से होती है। इस बैंक में 1000 रुपये जमा कराये जाते हैं। ज्ञात कीजिए कि 10 वर्ष बाद यह राशि कितनी हो जाएगी? (e0.5 = 1.648)


अवकल समीकरण `dy/dx = e^(x+y)`  का व्यापक हल है:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×