Advertisements
Advertisements
Question
बिंदु (0, 0) से गुजरने वाले एक ऐसे वक्र का समीकरण ज्ञात कीजिए जिसका अवकल समीकरण y’ = ex sin x है।
Solution 1
दिया है y’ = ex sin x
या `dy/dx = e^x sin x`
⇒ dy = ex sin x dx .....(i)
समाकलन करने पर,
`int 1. dy = int e^x sin x dx`
y `= 1/2 e^x (sin x - cos x)` = C ...... (ii)
तब समीकरण (ii) से
`0 = 1/2 e^0` (sin 0 - cos 0 )+ C
`0 = 1/2` (0 - 1) + C ⇒ C `= 1/2`
C `= 1/2` समीकरण (ii) में रखने पर,
y `= 1/2 e^x (sin x - cos x) + 1/2`
y `= 1/2 [e^x (sin x - cos x) + 1]`
2y - 1 `= e^x (sin x - cos x)`
Solution 2
हमारे पास है,
y' = ex sin x
⇒ `dy/dx = e^x sin x`
⇒ `dy = e^x sin x dx` ....(1)
दोनों पक्षों (1) को एकीकृत करने पर, हम प्राप्त करते हैं।
`int dy = inte^x sin x dx`
⇒ `y = -e^x cos x + int e^x cos x dx`
⇒ `y = -e^x cos x + e^x sin x - int e^x sin x dx`
⇒ `y = - e^x cos x +e^x sin x - y + C`
⇒ `2y = -e^x cos x + e^x sin x + C`
As pint (0, 0) lies on it, i.e., x = 0, y = 0
∴ 0 = -e0 + C
⇒ C = 1
∴ अभीष्ट समीकरण है,
2y = -ex cos x + ex sin x + 1
अत:, 2y - 1 = ex (sin x - cos x)
APPEARS IN
RELATED QUESTIONS
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए।
`dy/dx = (1 - cos x)/(1 + cos x)`
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए।
`dy/dx sqrt(4 - y^2) (-2 < y < 2)`
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए।
`dy/dx + y = 1 (y ne 1)`
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए।
sec2 x tan y dx + sec2 y tan x dy = 0
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए।
(ex + e-x) dy - (ex - e-x) dx = 0
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए।
`dy/dx` = (1 + x2) (1 + y2)
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए।
`x^5 dy/dx = - y^5`
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए।
ex tan y dx + (1 - ex) sec2 y dy = 0
निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए।
`(x^3 + x^2 + x + 1) dy/dx = 2x^2 + x`; y = 1 यदि x = 0
निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए।
`x (x^2 - 1) dy/dx = 1` ; y = 0 यदि x = 2
निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए।
`cos (dy/dx) = a (a in R)`: y = 1 यदि x = 0
निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए।
`"dy"/"dx"` = y tan x ; y = 1 यदि x = 0
अवकल समीकरण `xy dy/dx = (x + 2)(y + 2`) के लिए बिंदु (1, -1) से गुजरने वाला वक्र ज्ञात कीजिए।
बिंदु (0, -2) से गुजरने वाले एक ऐसे वक्र का समीकरण ज्ञात कीजिए जिसके किसी बिंदु (x, y) पर स्पर्श रेखा की प्रवणता और उस बिंदु के y निर्देशांक का गुणनफल उस बिंदु के x निर्देशांक के बराबर है।
एक वक्र के किसी बिंदु (x, y) पर स्पर्श रेखा की प्रवणता, स्पर्श बिंदु को, बिंदु (-4, -3) से मिलाने वाले रेखाखंड प्रवणता की दुगनी है। यदि यह वक्र बिंदु (-2, 1)से गुजरता हो तो इस वक्र का समीकरण ज्ञात कीजिए।
एक गोलाकार गुब्बारे का आयतन, जिसे हवा भरकर फुलाया जा रहा है, स्थिर गति से बदल रहा है। यदि आरंभ में इस गुब्बारे की त्रिज्या 3 इकाई है और 3 सेकंड बाद 6 इकाई है, तो t सेकंड बाद उस गुब्बारे की त्रिज्या ज्ञात कीजिए।
किसी जीवाणु समूह में जीवाणुओं की संख्या 1,00,000 है। 2 घंटो में इनकी संख्या में 10% की वृद्धि होती है। कितने घंटो में जीवाणुओं की संख्या 2,00,000 हो जाएगी। यदि जीवाणुओं के वृद्धि की दर उनमें उपस्थित संख्या के समानुपाती है।
अवकल समीकरण `dy/dx = e^(x+y)` का व्यापक हल है: