Advertisements
Advertisements
Question
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए।
`dy/dx + y = 1 (y ne 1)`
Solution 1
`dy/dx = 1 - y`
`dy/(1 - y) = dx`
समाकलन करने पर
`int dy/(1 - y) = int dx`
- log (1 - y) = x + log C
log (1 - y) + log C = - x
log C (1 - y) = e-x
1 - y = `1/C e^(-x)`
y = 1 - `1/C e^(-x)`
y = `1 + Ae^(-x)`
जहाँ A = `1/C`
Solution 2
`dy/dx + y = 1`
⇒ `dy/dx = - (y - 1)`
⇒ `dy/(y - 1) = - dx` ....(1)
दोनों पक्षों (1) को एकीकृत करने पर, हमें प्राप्त होता है।
⇒ `intdy/(y - 1) = - intdx`
⇒ log (y - 1) = -x + C1
⇒ y - 1 = e-x+C1
⇒ y = 1 + e-x . eC1
अतः, y = 1 + Ce-x, जो कि अभीष्ट हल है।
APPEARS IN
RELATED QUESTIONS
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए।
`dy/dx = (1 - cos x)/(1 + cos x)`
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए।
(ex + e-x) dy - (ex - e-x) dx = 0
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए।
`dy/dx` = (1 + x2) (1 + y2)
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए।
`x^5 dy/dx = - y^5`
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए।
`dy/dx = sin^-1 x`
निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए।
ex tan y dx + (1 - ex) sec2 y dy = 0
निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए।
`cos (dy/dx) = a (a in R)`: y = 1 यदि x = 0
बिंदु (0, 0) से गुजरने वाले एक ऐसे वक्र का समीकरण ज्ञात कीजिए जिसका अवकल समीकरण y’ = ex sin x है।
अवकल समीकरण `xy dy/dx = (x + 2)(y + 2`) के लिए बिंदु (1, -1) से गुजरने वाला वक्र ज्ञात कीजिए।
बिंदु (0, -2) से गुजरने वाले एक ऐसे वक्र का समीकरण ज्ञात कीजिए जिसके किसी बिंदु (x, y) पर स्पर्श रेखा की प्रवणता और उस बिंदु के y निर्देशांक का गुणनफल उस बिंदु के x निर्देशांक के बराबर है।
एक वक्र के किसी बिंदु (x, y) पर स्पर्श रेखा की प्रवणता, स्पर्श बिंदु को, बिंदु (-4, -3) से मिलाने वाले रेखाखंड प्रवणता की दुगनी है। यदि यह वक्र बिंदु (-2, 1)से गुजरता हो तो इस वक्र का समीकरण ज्ञात कीजिए।
एक गोलाकार गुब्बारे का आयतन, जिसे हवा भरकर फुलाया जा रहा है, स्थिर गति से बदल रहा है। यदि आरंभ में इस गुब्बारे की त्रिज्या 3 इकाई है और 3 सेकंड बाद 6 इकाई है, तो t सेकंड बाद उस गुब्बारे की त्रिज्या ज्ञात कीजिए।
किसी बैंक में मूलधन की वृद्धि r % वार्षिक की दर से होती है। यदि 100 रुपये 10 वर्षों में दुगने हो जाते हैं, तो r का मान ज्ञात कीजिए। (loge 2 = 0.6931).
किसी बैंक में मूलधन की वृद्धि 5% वार्षिक की दर से होती है। इस बैंक में 1000 रुपये जमा कराये जाते हैं। ज्ञात कीजिए कि 10 वर्ष बाद यह राशि कितनी हो जाएगी? (e0.5 = 1.648)
अवकल समीकरण `dy/dx = e^(x+y)` का व्यापक हल है: