हिंदी

निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए। ex tan y dx + (1 - ex) sec2 y dy = 0 - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए।

ex tan y dx + (1 - ex) sec2 y dy = 0

योग

उत्तर

हमारे पास है, ex tan y dx + (1 - ex) sec2 y dy = 0 या ex tan y dx = -(1 - ex) sec2 y dy

⇒ `e^x/(1 - e^x) dx = (-sec^2y)/(tany)  dy`            ...(1)

दोनों पक्षों (1) को एकीकृत करने पर, हम प्राप्त करते हैं।

`int(e^x)/(1 - e^x)  dx = - int(sec^2 y)/(tan y) dy`

माना `I_1 = int e^x/(1 - e^x) dx`

और `I_2 = int(sec^2y)/(tan y) dy`

अब, `I_1 = int e^x/(1 - e^x)  dx`

∴ 1- ex = t रखने पर,

⇒ -ex dx = dt

`I_1 = int (-dt)/t = -log |t| - log C_1`

`= - log (t C_1) = -log ((1 - e^x)C_1)`               ....(2)

अब, `I_2 = int (sec^2 y)/(tan y)  dy`

∴ tan y = t रखने पर,

⇒ sec2 y dy = dt

`I_2 = int dt/t = log |t| + log  C_2`

`= log |tany| + log C_2`

= log (C2 tan y)

इसके अलावा I1 = -I2

⇒ - log (C1 (1 - ex))

= - log (C2 tan y)

⇒ C1 (1 - ex) = C2 tan y

⇒ tan y = C (1 - ex)

आवश्यक समाधान है।

shaalaa.com
प्रथम कोटि एवं प्रथम घात के अवकाल समीकरणों को हल करने की विधियाँ - पृथक्करणीय चर वाले अवकल समीकरण
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: अवकल समीकरण - प्रश्नावली 9.4 [पृष्ठ ४१२]

APPEARS IN

एनसीईआरटी Mathematics - Part 1 and 2 [Hindi] Class 12
अध्याय 9 अवकल समीकरण
प्रश्नावली 9.4 | Q 10. | पृष्ठ ४१२

संबंधित प्रश्न

निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए।

`dy/dx = (1 - cos x)/(1 + cos  x)`


निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए।

`dy/dx sqrt(4 - y^2)  (-2 < y < 2)`


निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए।

`dy/dx + y = 1 (y ne 1)`


निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए।

sec2 x tan y dx + sec2 y tan x dy = 0


निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए।

`dy/dx` = (1 + x2) (1 + y2)


निम्नलिखित प्रश्न में अवकल समीकरण का व्यापक हल ज्ञात कीजिए।

`dy/dx = sin^-1 x`


निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए।

`(x^3 + x^2 + x + 1) dy/dx = 2x^2 + x`; y = 1 यदि x = 0


निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए।

`x (x^2 - 1) dy/dx = 1` ; y = 0 यदि x = 2


निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए।

`cos (dy/dx) = a (a in R)`: y = 1 यदि x = 0


निम्नलिखित प्रश्न में अवकल समीकरण के लिए दिए हुए प्रतिबंध को संतुष्ट करने वाला विशिष्ट हल ज्ञात कीजिए।

`"dy"/"dx"` = y tan x ; y = 1 यदि x = 0


बिंदु (0, 0) से गुजरने वाले एक ऐसे वक्र का समीकरण ज्ञात कीजिए जिसका अवकल समीकरण y’ = ex sin x है।


अवकल समीकरण `xy  dy/dx = (x + 2)(y + 2`) के लिए बिंदु (1, -1) से गुजरने वाला वक्र ज्ञात कीजिए।


बिंदु (0, -2) से गुजरने वाले एक ऐसे वक्र का समीकरण ज्ञात कीजिए जिसके किसी बिंदु (x, y) पर स्पर्श रेखा की प्रवणता और उस बिंदु के y निर्देशांक का गुणनफल उस बिंदु के x निर्देशांक के बराबर है।


एक वक्र के किसी बिंदु (x, y) पर स्पर्श रेखा की प्रवणता, स्पर्श बिंदु को, बिंदु (-4, -3) से मिलाने वाले रेखाखंड प्रवणता की दुगनी है। यदि यह वक्र बिंदु (-2, 1)से गुजरता हो तो इस वक्र का समीकरण ज्ञात कीजिए।


किसी बैंक में मूलधन की वृद्धि r % वार्षिक की दर से होती है। यदि 100 रुपये 10 वर्षों में दुगने हो जाते हैं, तो r का मान ज्ञात कीजिए। (loge 2 = 0.6931).


किसी बैंक में मूलधन की वृद्धि 5% वार्षिक की दर से होती है। इस बैंक में 1000 रुपये जमा कराये जाते हैं। ज्ञात कीजिए कि 10 वर्ष बाद यह राशि कितनी हो जाएगी? (e0.5 = 1.648)


किसी जीवाणु समूह में जीवाणुओं की संख्या 1,00,000 है। 2 घंटो में इनकी संख्या में 10% की वृद्धि होती है। कितने घंटो में जीवाणुओं की संख्या 2,00,000 हो जाएगी। यदि जीवाणुओं के वृद्धि की दर उनमें उपस्थित संख्या के समानुपाती है।


अवकल समीकरण `dy/dx = e^(x+y)`  का व्यापक हल है:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×