Advertisements
Advertisements
प्रश्न
एक कंपनी ने 4000 परिवारों को यादृच्छिक रूप से चुना तथा उनके आय स्तर और घर में स्थित टी.वी. सेटों की संख्या में संबंध ज्ञात करने हेतु एक सर्वेक्षण किया। इस प्रकार प्राप्त सूचनाओं को निम्नलिखित सारणी के रूप में सूचीबद्ध किया गया है :
मासिक आय (रू में) |
टी.वी. सेटों/परिवारों की संख्या | |||
0 | 1 | 2 | 2 से अधिक | |
< 10000 | 20 | 80 | 10 | 0 |
10000 – 14999 | 10 | 240 | 60 | 0 |
15000 – 19999 | 0 | 380 | 120 | 30 |
20000 – 24999 | 0 | 520 | 370 | 80 |
25000 और उससे अधिक | 0 | 1100 | 760 | 220 |
निम्नलिखित की प्रायिकता ज्ञात कीजिए -
- एक परिवार की आय 10000 रु – 14999 रु होने और घर में ठीक एक टी.वी. सेट होना
- एक परिवार की आय 25000 रु और उससे अधिक होना और घर में दो टी.वी. सेट होना।
- एक परिवार में एक भी टी.वी. सेट नहीं होना।
उत्तर
कंपनी द्वारा चुने गए परिवारों की कुल संख्या, n(S) = 4000
i. प्रति वर्ष ₹ 10000 – ₹ 14999 कमाने वाले परिवारों की संख्या और ठीक एक टेलीविज़न होने पर, n(E1) = 240
∴ आवश्यक प्रायिकता = `(n(E_1))/(n(S))`
= `240/4000`
= `6/100`
= `3/50`
= 0.06
अत:, एक परिवार की आय ₹ 10000 – ₹ 14999 प्रति वर्ष और ठीक एक टेलीविजन होने की संभावना 0.06 है।
ii. प्रति वर्ष ₹ 25000 और अधिक आय वाले परिवारों की संख्या जिनके पास 2 टेलीविज़न हैं, n(E2) = 760
∴ आवश्यक प्रायिकता = `(n(E_2))/(n(S))`
= `760/4000`
= 0.19
अत:, 2 टेलीविज़न के मालिक द्वारा प्रति वर्ष ₹ 25000 और उससे अधिक आय अर्जित करने की संभावना 0.19 है।
iii. उन परिवारों की संख्या जिनके पास कोई टेलीविजन नहीं है, n(E3) = 30
∴ आवश्यक प्रायिकता = `(n(E_3))/(n(S))`
=` 30/4000`
= `3/400`
अत:, एक घर में कोई टेलीविजन नहीं होने की प्रायिकता `3/400` है।
APPEARS IN
संबंधित प्रश्न
घटना E की प्रायिकता + घटना ‘E नहीं’ की प्रायिकता = _________ है।
यदि किसी घटना की प्रायिकता p है, तो इसकी पूरक घटना की प्रायिकता ______ है।
जब एक पासे को फेंका जाता है, तो 3 से छोटी एक विषम संख्या आने की प्रायिकता ______ है।
मैं तीन सिक्कों को एक साथ उछालता हूँ। संभव परिणाम कोई चित नहीं, 1 चित, 2 चित या 3 चित है। अतः, मैं कहता हूँ की कोई चित प्राप्त न करने की प्रायिकता `1/4` है। इस निष्कर्ष में क्या गलती है?
बच्चों के एक खेल में, 8 त्रिभुज हैं, जिसमें से 3 नीले और शेष लाल हैं। साथ ही, इस खेल में 10 वर्ग हैं जिसमें से 6 नीले हैं और शेष लाल हैं। इनमें से एक टुकड़ा यादृच्छिक रूप से खो जाता है। इस टुकड़े के निम्नलिखित होने की प्रायिकता ज्ञात कीजिए -
वर्ग
क्या किसी घटना की प्रायोगिक प्रायिकता एक ऋणात्मक संख्या हो सकती है? यदि नहीं, तो क्यों?
दो पासों को एक साथ 500 बार फेंका जाता है। प्रत्येक बार उनके ऊपर आई संख्याओं के योग को ज्ञात करके नीचे दी गई सारणी के अनुसार रिकार्ड किया गया है :
योग | बारंबारता |
2 | 14 |
3 | 30 |
4 | 42 |
5 | 55 |
6 | 72 |
7 | 75 |
8 | 70 |
9 | 53 |
10 | 46 |
11 | 28 |
12 | 15 |
यदि इन पासों को एक बार पुनः फेंका जाए तो निम्नलिखित योग ज्ञात करने की क्या प्रायकिता है?
8 और 12 के बीच
पैक किए गए प्रत्येक डिब्बे में बल्बों की संख्या 40 है। इनमें से 700 डिब्बों के खराब बल्बों की संख्या ज्ञात करने के लिए जाँच की गई तथा इसके परिणाम निम्नलिखित सारणी में दिए गए हैं :
खराब बल्बों की संख्या | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 6 से अधिक |
बारंबारता | 400 | 180 | 48 | 41 | 18 | 8 | 3 | 2 |
इन डिब्बों में से एक डिब्बा यादृच्छिक रूप से चुना जाता है। इसकी क्या प्रायिकता है कि इस डिब्बे में
- कोई बल्ब खराब नहीं होगा?
- खराब बल्बों की संख्या 2 से 6 तक होगी?
- 4 से कम खराब बल्ब होंगे?
कुछ समय पहले ही किए गए एक सर्वे में यह पाया गया कि एक फैक्ट्री के श्रमिकों की आयु का बंटन निम्नलिखित है :
आयु (वर्षों में) | 20 – 29 | 30 – 39 | 40 – 49 | 50 – 59 | 60 और उससे ऊपर |
श्रमिकों की संख्या | 38 | 27 | 86 | 46 | 3 |
यदि इनमें से एक व्यक्ति यादृच्छिक रूप से चुना जाता है तो इसकी क्या प्रायिकता है कि वह व्यक्ति 30 और 39 वर्ष के बीच की आयु का होगा?
कुछ समय पहले ही किए गए एक सर्वे में यह पाया गया कि एक फैक्ट्री के श्रमिकों की आयु का बंटन निम्नलिखित है :
आयु (वर्षों में) | 20 – 29 | 30 – 39 | 40 – 49 | 50 – 59 | 60 और उससे ऊपर |
श्रमिकों की संख्या | 38 | 27 | 86 | 46 | 3 |
यदि इनमें से एक व्यक्ति यादृच्छिक रूप से चुना जाता है तो इसकी क्या प्रायिकता है कि वह व्यक्ति 60 वर्ष से कम आयु का होगा परंतु 39 वर्ष से अधिक होगा?