Advertisements
Advertisements
प्रश्न
पैक किए गए प्रत्येक डिब्बे में बल्बों की संख्या 40 है। इनमें से 700 डिब्बों के खराब बल्बों की संख्या ज्ञात करने के लिए जाँच की गई तथा इसके परिणाम निम्नलिखित सारणी में दिए गए हैं :
खराब बल्बों की संख्या | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 6 से अधिक |
बारंबारता | 400 | 180 | 48 | 41 | 18 | 8 | 3 | 2 |
इन डिब्बों में से एक डिब्बा यादृच्छिक रूप से चुना जाता है। इसकी क्या प्रायिकता है कि इस डिब्बे में
- कोई बल्ब खराब नहीं होगा?
- खराब बल्बों की संख्या 2 से 6 तक होगी?
- 4 से कम खराब बल्ब होंगे?
उत्तर
डिब्बों की कुल संख्या, n(S) = 700
i. डिब्बों की संख्या जिनमें कोई खराब बल्ब नहीं है,
n(E1) = 400
∴ कोई खराब बल्ब न होने की प्रायिकता = `(n(E_1))/(n(S))`
= `400/700`
= `4/7`
अत:, संभावना है कि कोई दोषपूर्ण बल्ब नहीं `4/7` है।
ii. 2 से 6 तक दोषपूर्ण बल्ब वाले डिब्बों की संख्या,
n(E2) = 48 + 41 + 18 + 8 + 3 = 118
∴ 2 से 6 तक बल्ब खराब होने की प्रायिकता = `(n(E_2))/(n(S))`
= `118/700`
= `59/350`
अत:, संभावना है कि 2 से 6 तक एक दोषपूर्ण बल्ब `59/350` है।
iii. उन कार्टन की संख्या जिनमें 4 से कम खराबी है,
n(E3) = 400 + 180 + 48 + 41 = 669
∴ 4 से कम खराब बल्ब होने की प्रायिकता = `(n(E_3))/(n(S)) = 669/700`
अत:, खराब बल्बों के 4 से कम होने की प्रायिकता `669/700` है।
APPEARS IN
संबंधित प्रश्न
यदि कोई घटना घटित नहीं हो सकती है, तो उसकी प्रायिकता ______ है।
52 ताशों की एक गड्डी में से एक ताश निकाला जाता है। इसके लाल रंग का मुख कार्ड होने की प्रायिकता ______ है।
इसकी प्रायिकता कि यादृच्छिक रूप से चुने गए एक ऐसे वर्ष में, जो अधिवर्ष (leap year) न हो 53 रविवार हों, निम्नलिखित है :
जब एक पासे को फेंका जाता है, तो 3 से छोटी एक विषम संख्या आने की प्रायिकता ______ है।
मैं तीन सिक्कों को एक साथ उछालता हूँ। संभव परिणाम कोई चित नहीं, 1 चित, 2 चित या 3 चित है। अतः, मैं कहता हूँ की कोई चित प्राप्त न करने की प्रायिकता `1/4` है। इस निष्कर्ष में क्या गलती है?
एक सतत बंटन के वर्ग चिह्न निम्नलिखित हैं :
1.04, 1.14, 1.24, 1.34, 1.44, 1.54 और 1.64
क्या यह कहना सही है कि अंतिम अंतराल 1.55 – 1.73 होगा ? अपने उत्तर का कारण दीजिए।
एक कंपनी ने 4000 परिवारों को यादृच्छिक रूप से चुना तथा उनके आय स्तर और घर में स्थित टी.वी. सेटों की संख्या में संबंध ज्ञात करने हेतु एक सर्वेक्षण किया। इस प्रकार प्राप्त सूचनाओं को निम्नलिखित सारणी के रूप में सूचीबद्ध किया गया है :
मासिक आय (रू में) |
टी.वी. सेटों/परिवारों की संख्या | |||
0 | 1 | 2 | 2 से अधिक | |
< 10000 | 20 | 80 | 10 | 0 |
10000 – 14999 | 10 | 240 | 60 | 0 |
15000 – 19999 | 0 | 380 | 120 | 30 |
20000 – 24999 | 0 | 520 | 370 | 80 |
25000 और उससे अधिक | 0 | 1100 | 760 | 220 |
निम्नलिखित की प्रायिकता ज्ञात कीजिए -
- एक परिवार की आय 10000 रु – 14999 रु होने और घर में ठीक एक टी.वी. सेट होना
- एक परिवार की आय 25000 रु और उससे अधिक होना और घर में दो टी.वी. सेट होना।
- एक परिवार में एक भी टी.वी. सेट नहीं होना।
एक कंपनी ने 4000 परिवारों को यादृच्छिक रूप से चुना तथा उनके आय स्तर और घर में स्थित टी.वी. सेटों की संख्या में संबंध ज्ञात करने हेतु एक सर्वेक्षण किया। इस प्रकार प्राप्त सूचनाओं को निम्नलिखित सारणी के रूप में सूचीबद्ध किया गया है :
मासिक आय (रू में) | टी.वी. सेटों/परिवारों की संख्या | |||
0 | 1 | 2 | 2 से अधिक | |
< 10000 | 20 | 80 | 10 | 0 |
10000 – 14999 | 10 | 240 | 60 | 0 |
15000 – 19999 | 0 | 380 | 120 | 30 |
20000 – 24999 | 0 | 520 | 370 | 80 |
25000 और उससे अधिक | 0 | 1100 | 760 | 220 |
निम्नलिखित की प्रायिकता ज्ञात कीजिए -
एक परिवार की आय 25000 रु और उससे अधिक होना और घर में दो टी.वी. सेट होना।
दो पासों को एक साथ 500 बार फेंका जाता है। प्रत्येक बार उनके ऊपर आई संख्याओं के योग को ज्ञात करके नीचे दी गई सारणी के अनुसार रिकार्ड किया गया है :
योग | बारंबारता |
2 | 14 |
3 | 30 |
4 | 42 |
5 | 55 |
6 | 72 |
7 | 75 |
8 | 70 |
9 | 53 |
10 | 46 |
11 | 28 |
12 | 15 |
यदि इन पासों को एक बार पुनः फेंका जाए तो निम्नलिखित योग ज्ञात करने की क्या प्रायकिता है?
8 और 12 के बीच
पैक किए गए प्रत्येक डिब्बे में बल्बों की संख्या 40 है। इनमें से 700 डिब्बों के खराब बल्बों की संख्या ज्ञात करने के लिए जाँच की गई तथा इसके परिणाम निम्नलिखित सारणी में दिए गए हैं :
खराब बल्बों की संख्या | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 6 से अधिक |
बारंबारता | 400 | 180 | 48 | 41 | 18 | 8 | 3 | 2 |
इन डिब्बों में से एक डिब्बा यादृच्छिक रूप से चुना जाता है। इसकी क्या प्रायिकता है कि इस डिब्बे में खराब बल्बों की संख्या 2 से 6 तक होगी?