Advertisements
Advertisements
प्रश्न
एक समद्विबाहु त्रिभुज का क्षेत्रफल `5/4 sqrt(11)` cm2 होगा, यदि उसका परिमाप 11 cm है और आधार 5 cm है।
विकल्प
सत्य
असत्य
उत्तर
यह कथन सत्य है।
स्पष्टीकरण -
मान लीजिए समद्विबाहु त्रिभुज की भुजा a है।
अब, एक समद्विबाहु त्रिभुज का परिमाप -
2s = 5 + a + a ...[2s = a + b + c]
11 = 5 + 2a
2a = 11 – 5
2a = 6
a = 3
अब, समद्विबाहु त्रिभुज के क्षेत्रफल का सूत्र = `a/4 sqrt(4b^2 - a^2)`
तो, एक समद्विबाहु त्रिभुज का क्षेत्रफल = `(5sqrt(4 xx (3)^2 - (5)^2))/4`
= `(5sqrt(4 xx 9 - 25))/4`
= `5 xx sqrt(36 - 25)/4`
= `(5sqrt(11))/4` cm2
APPEARS IN
संबंधित प्रश्न
एक चतुर्भुज ABCD का क्षेत्रफल ज्ञात कीजिए, जिसमें AB = 3 सेमी, BC = 4 सेमी, CD = 4 सेमी, DA = 5 सेमी और AC = 5 सेमी हैं।
एक समचतर्भजाकार घास के खेत में 18 गायों के चरने के लिए घास है। यदि इस समचतुर्भुज की प्रत्येक भुजा 30 मी है और बड़ा विकर्ण 48 मी है, तो प्रत्येक गाय को चरने के लिए इस घास के खेत का कितना क्षेत्रफल प्राप्त होगा?
एक पतंग तीन भिन्न-भिन्न रंगों के कागज़ों से बनी है। इन्हें आकृति में I, II और III से दर्शाया गया है। पतंग का ऊपरी भाग 32 सेमी विकर्ण का एक वर्ग है और निचला भाग 6 सेमी, 6 सेमी और 8 सेमी भुजाओं का एक समद्विबाहु त्रिभुज है। ज्ञात कीजिए कि प्रत्येक रंग का कितना कागज़ प्रयुक्त किया गया है।
एक खेत समलंब के आकार का है जिसकी समांतर भुजाएँ 25 मी और 10 मी हैं। इसकी असमांतर भुजाएँ 14 मी और 13 मी हैं। इस खेत का क्षेत्रफल ज्ञात कीजिए।
एक त्रिभुज की भुजाएँ 11 cm, 12 cm और 13 cm की हैं। 12 cm लंबी भुजा के संगत शीर्षलंब की लंबाई 10.25 cm हैं।
एक फ्लाईओवर की त्रिभुजाकार पार्श्व दीवारों को विज्ञापनों के लिए प्रयोग किया जाता है। दीवारों की भुजाएँ 13 m, 14 m और 15m हैं। विज्ञापनों से एक वर्ष में 2000 रु प्रति m2 की दर से आय होती है। एक कंपनी इनमें से एक दीवार को 6 महीने के लिए किराए पर लेती है। उस कंपनी ने कितना किराया दिया होगा?
एक चतुर्भुज ABCD की भुजाएँ (एक क्रम में लेने पर) 6 cm, 8 cm, 12 cm और 14 cm हैं तथा प्रथम दो भुजाओं के बीच का कोण समकोण है। इसका क्षेत्रफल ज्ञात कीजिए।
एक मकान का निर्माण करने के लिए एक आयताकार भूखंड दिया गया, जिसकी लंबाई 40 m है तथा सामने की चौडाई 15 m है। नियमों के अनुसार, सामने और पीछे की ओर न्यूनतम 3 m चौड़ी जगह तथा प्रत्येक अन्य ओर पर न्यूनतम 2 m चौड़ी जगह छोड़नी आवश्यक है। वह अधिकतम क्षेत्र ज्ञात कीजिए जिसमें मकान का निर्माण किया जा सकता है।
एक आयत ABCD की विमाएँ 51 cm × 25 cm हैं। इस आयत में से एक समलंब PQCD काटा जाता है, जिसकी समांतर भुजाएँ QC और PD हैं और ये 9 : 8 के अनुपात में हैं, जैसा कि निम्नलिखित आकृति में दर्शाया गया है। यदि समलंब PQCD का क्षेत्रफल आयत के क्षेत्रफल का `5/6` भाग है, तो QC और PD की लंबाइयाँ ज्ञात कीजिए।
50 cm × 70 cm विमाओं वाली एक आयताकार टाइल पर, निम्नलिखित आकृति में दर्शाए अनुसार एक डिज़ाइन बनाया जाता है। इस डिज़ाइन में 8 त्रिभुज हैं, जिनमें से प्रत्येक की भुजा 26 cm, 17 cm और 25 cm की हैं। डिज़ाइन का पूर्ण क्षेत्रफल ज्ञात कीजिए तथा टाइल के शेष भाग का क्षेत्रफल भी ज्ञात कीजिए।