हिंदी

एक त्रिभुज की दो भुजाओं की लंबाइयाँ 5 cm और 1.5 cm हैं। इस त्रिभुज की तीसरी भुजा की लंबाई निम्नलिखित नहीं हो सकती ______ - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

एक त्रिभुज की दो भुजाओं की लंबाइयाँ 5 cm और 1.5 cm हैं। इस त्रिभुज की तीसरी भुजा की लंबाई निम्नलिखित नहीं हो सकती ______ 

विकल्प

  • 3.6 cm

  • 4.1 cm

  • 3.8 cm

  • 3.4 cm

MCQ
रिक्त स्थान भरें

उत्तर

एक त्रिभुज की दो भुजाओं की लंबाइयाँ 5 cm और 1.5 cm हैं। इस त्रिभुज की तीसरी भुजा की लंबाई निम्नलिखित नहीं हो सकती 3.4 cm 

स्पष्टीकरण -

दिया गया है, एक त्रिभुज की दो भुजाओं की लंबाई क्रमशः 5 cm और 1.5 cm है।

माना भुजाएँ AB = 5 cm और CA = 1.5 cm

हम जानते हैं कि, तीन प्रतिच्छेदी रेखाओं (या भुजाओं) से बनी एक बंद आकृति को त्रिभुज कहा जाता है, यदि दो भुजाओं का अंतर < तीसरी भुजा और दो भुजाओं का योग > तीसरी भुजा

∴ 5 – 1.5 < BC और 5 + 1.5 > BC

⇒ 3.5 < BC और 6.5 > BC

यहाँ, हम देखते हैं कि विकल्प (a), (b) और (c) उपरोक्त असमानता को संतुष्ट करते हैं लेकिन विकल्प (d) उपरोक्त असमानता को संतुष्ट नहीं करता है।

shaalaa.com
त्रिभुजों की सर्वांगसमता
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: त्रिभुज - प्रश्नावली 7.1 [पृष्ठ ६४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 9
अध्याय 7 त्रिभुज
प्रश्नावली 7.1 | Q 8. | पृष्ठ ६४

संबंधित प्रश्न

यदि सुमेलन ABC ↔ FED के अंतर्गत △ABC ≅ △FED तो त्रिभुजो के सभी संगत सर्वागसम भागो को लिखिए।


∆ABC में, ∠A = 30°, ∠B = 40° और ∠C = 110°, ∆PQR में, ∠P = 30° ∠Q = 40° और ∠R = 110° एक विद्यार्थी कहता है कि A.A.A. सर्वांगसमता प्रतिबन्ध से ∆ABC ≅ ∆PQR है। क्या यह कथन सत्य है? क्यों या क्यों नहीं?


आकृति में दो त्रिभुज ART तथा OWN सर्वांगसम हैं जिसके संगत भागो को अंकित किया गया है। हम लिख सकते है △RAT ≅ ?


∆ABC में, AB = AC और ∠B = 50° है, तब ∠C बराबर है


निम्नलिखित आकृति में, D और E त्रिभुज ABC की भुजा BC पर दो बिंदु इस प्रकार स्थित हैं कि BD = CE और AD = AE है। दर्शाइए कि ∆ABD ≅ ∆ACE है।


नीचे दिए गए प्रत्येक उदाहरण में त्रिभुज की जोड़ि के सर्वांगसम घटक एक जैसे चिह्न से दर्शाए गए हैं।  त्रिभुज किस कसौटी के आधार पर सर्वांगसम हैं रिक्त स्थानों में वह कसौटी लिखिए।

______ कसौटी से

ΔLMN ≅ ΔPTR


नीचे दी गई आकृति में दर्शाए अनुसार ΔLMN तथा ΔPNM में LM = PN, LN = PM हो तो त्रिभुजों की सर्वांगसमता की कसौटी लिखिए । शेष सर्वांगसम घटकों के नाम भी लिखिए ।


आकृति में रेख AB ≅ रेख BC तथा रेख AD ≅ रेख CD तो सिद्ध कीजिए Δ ABD ≅ Δ CBD


ΔTPQ में ∠T = 65°, ∠P = 95° तो निम्नलिखित में से कौन-सा कथन सत्य है ?


समद्‌विबाहु ΔABC में AB = AC है। BD तथा CE दो माध्यिकाएँ हैं तो सिद्ध कीजिए कि BD = CE


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×