Advertisements
Advertisements
प्रश्न
एक वृत्त का केंद्र मूलबिंदु पर है तथा एक बिंदु P(5, 0) इस वृत्त पर स्थित है। बिंदु Q(6, 8) इस वृत्त के बाहर स्थित है।
विकल्प
सत्य
असत्य
उत्तर
यह कथन सत्य है।
स्पष्टीकरण:
सबसे पहले, हम दी गई जानकारी से एक वृत्त और एक बिंदु बनाते हैं।
अब, मूल बिन्दु अर्थात् O(0, 0) और P(5, 0) के बीच की दूरी,
OP = `sqrt((x_2 - x_1)^2 + (y_2 - y_1)^2`
OP = `sqrt((5 - 0)^2 + (0 - 0)^2`
= `sqrt(5^2 + 0^2)`
= 5
= वृत्त की त्रिज्या और मूल बिंदु O(0, 0) और Q(6, 8) के बीच की दूरी,
OQ = `sqrt((6 - 0)^2 + (8 - 0)^2`
= `sqrt(6^2 + 8^2)`
= `sqrt(36 + 64)`
= `sqrt(100)`
= 10
हम जानते हैं कि, यदि केंद्र से किसी बिंदु की दूरी त्रिज्या से कम/बराबर/अधिक है, तो वह बिंदु क्रमशः वृत्त के अंदर/पर/बाहर होता है।
यहाँ, हम देखते हैं कि, OQ > OP
अतः, यह सत्य है कि बिंदु Q(6, 8), वृत्त के बाहर स्थित है।
APPEARS IN
संबंधित प्रश्न
यदि बिंदु L(x, 7) और M(1, 15) के बीच की दूरी 10 हो, तो x का मान ज्ञात कीजिए।
नीचे दिए गए बिंदु एकरेखीय हैं या नहीं? इसकी जाँच कीजिए।
P(-2, 3), Q(1, 2), R(4, 1)
सिद्ध कीजिए कि, P(2, -2), Q(7, 3), R(11, -1) और S(6, -6) समांतर चर्तुभुज के शीर्षबिंदु है।
सिद्ध कीजिए कि, A(-4, -7), B(-1, 2), C(8, 5) और D(5, -4) समचतुर्भुज ABCD के शीर्ष बिंदु हैं।
निम्नलिखित बिंदुओं को जोड़नेवाले रेखाखंड त्रिभुज बना सकते हैं क्या? यदि त्रिभुज बनता हो तो भुजाओं के आधार पर त्रिभुज का प्रकार लिखिए।
A(`sqrt2, sqrt2`), B(`-sqrt2 , -sqrt2`), C(`-sqrt6 , sqrt6`)
यदि बिंदु P(2, 1), Q(-1, 3), R(-5, -3) और S(-2, -5) हो तो सिद्ध कीजिए कि `square`PQRS एक आयत है।
x और y में एक ऐसा संबंध ज्ञात कीजिए कि बिंदु (x, y) बिंदुओं (3, 6) और (–3, 4) से समदूरस्थ हो।
बिंदुओं (6, -6), (3, -7) और (3, 3) से होकर जाने वाले वृत्त का केंद्र ज्ञात कीजिए।
बिंदु A(4, 3), B(6, 4), C(5, –6) और D(–3, 5) एक समांतर चतुर्भुज के शीर्ष हैं।
बिन्दु O(0, 0) तथा P(3, 4) के बीच की दूरी ज्ञात कीजिए।