Advertisements
Advertisements
प्रश्न
एक वृत्त का क्षेत्रफल व्यंजक πx2 + 6πx + 9π से दिया जाता है। वृत्त की त्रिज्या ज्ञात कीजिए।
उत्तर
दिया गया, वृत्त का क्षेत्रफल = πx2 + 6πx + 9π
वृत्त का क्षेत्रफल = πr2
⇒ πr2 = πx2 + 6πx + 9π
⇒ πr2 = π(x2 + 3x + 3x + 9)
⇒ πr2 = π[x(x + 3) + 3(x + 3)]
⇒ πr2 = π(x + 3)(x + 3) ...(i)
वृत्त की त्रिज्या ज्ञात करें -
उपरोक्त चरण से,
r2 = (x + 3)(x + 3)
⇒ r2 = (x + 3)2
दोनों पक्षों की तुलना करने पर,
हम पाते हैं,
r = (x + 3)
इस प्रकार, वृत्त की त्रिज्या (x + 3) है।
APPEARS IN
संबंधित प्रश्न
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए -
9x2 – 1
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-
`x^2/9 - y^2/25`
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-
49x2 – 36y2
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए -
1331x3y – 11y3x
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-
`1/36a^2b^2 - 16/49b^2c^2`
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-
y4 – 81
एक वर्ग का क्षेत्रफल 9x2 + 24xy + 16y2 है। इस वर्ग की भुजा ज्ञात कीजिए।
एक आयत का क्षेत्रफल x2 + 7x + 12 है। यदि इसकी चौड़ाई (x + 3) है, तो उसकी लंबाई ज्ञात कीजिए।
एक त्रिभुज की ऊँचाई x4 + y4 है तथा आधार 14xy है। इस त्रिभुज का क्षेत्रफल ज्ञात कीजिए।
एक वृत्त की त्रिज्या 7ab − 7bc − 14ac है। उस वृत्त की परिधि ज्ञात कीजिए `(pi = 22/7)` का प्रयोग कीजिए।