Advertisements
Advertisements
प्रश्न
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-
49x2 – 36y2
उत्तर
दिए गए बीजीय व्यंजक है -
49x2 – 36y2
दिए गए बीजीय व्यंजकों को हम इस प्रकार लिख सकते है,
⇒ 7x × 7x − 6y × 6y
⇒ (7x)2 − (6y)2
दिए गए बीजीय व्यंजकों का गुणनखंडन ज्ञात कीजिए,
यहाँ, a = 7x, b = 6y
a2 − b2 = (a + b)(a − b) का उपयोग करे,
⇒ 49x2 − 36y2 = (7x + 6y)(7x − 6y)
इस प्रकार, 49x2 − 36y2 = (7x + 6y)(7x − 6y) का गुणनखंड है।
APPEARS IN
संबंधित प्रश्न
निम्नलिखित व्यंजक के गुणनखंड कीजिए:
20 l2m + 30 alm
निम्नलिखित व्यंजक के गुणनखंड कीजिए:
x2yz + xy2z + xyz2
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए -
3a2b3 – 27a4b
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-
`y^3 - y/9`
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-
`x^2/25 - 625`
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए -
x4 – y4
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए -
8a3 – 2a
एक आयत का क्षेत्रफल x2 + 7x + 12 है। यदि इसकी चौड़ाई (x + 3) है, तो उसकी लंबाई ज्ञात कीजिए।
(x + 5) प्रेक्षणों का योग x4 – 625 है। इन प्रेक्षणों का माध्य ज्ञात कीजिए।