Advertisements
Advertisements
प्रश्न
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-
`x^2/25 - 625`
उत्तर
दिए गए बीजीय व्यंजक है -
`x^2/25 - 625`
दिए गए बीजीय व्यंजकों को हम इस प्रकार लिख सकते है,
⇒ `(x/5 xx x/5 - 25 xx 25)`
⇒ `(x/5)^2 - (5)^2`
दिए गए बीजीय व्यंजकों का गुणनखंडन ज्ञात कीजिए,
यहाँ, a = `x/5`, b = 5
a2 − b2 = (a + b)(a − b) का उपयोग करे,
⇒ `x^2/25 - 625 = (x/5 - 25)(x/5 + 25)`
इस प्रकार, `x^2/25 - 625 = (x/5 - 25)(x/5 + 25)` का गुणनखंड है।
APPEARS IN
संबंधित प्रश्न
निम्नलिखित व्यंजक के गुणनखंड कीजिए:
7x − 42
निम्नलिखित व्यंजक के गुणनखंड कीजिए:
7a2 + 14a
निम्नलिखित व्यंजक के गुणनखंड कीजिए:
x2yz + xy2z + xyz2
निम्न के गुणनखंड कीजिए -
x2 + 18x + 65
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए -
3a2b3 – 27a4b
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-
`y^3 - y/9`
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए -
(a – b)2 – (b – c)2
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए -
8a3 – 2a
(x + 5) प्रेक्षणों का योग x4 – 625 है। इन प्रेक्षणों का माध्य ज्ञात कीजिए।
निम्न में, स्तंभ I के व्यंजकों को स्तंभ II के व्यंजकों से सुमेलित कीजिए -
स्तंभ I | स्तंभ II |
(1) (21x + 13y)2 | (a) 441x2 – 169y2 |
(2) (21x – 13y)2 | (b) 441x2 + 169y2 + 546xy |
(3) (21x – 13y)(21x + 13y) | (c) 441x2 + 169y2 – 546xy |
(d) 441x2 – 169y2 + 546xy |