हिंदी

सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए - 8a3 – 2a - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए -

8a3 – 2a

योग

उत्तर

दिए गए बीजीय व्यंजक है -

8a3 – 2a

दिए गए बीजीय व्यंजकों को हम इस प्रकार लिख सकते है,

⇒ 2a(4a2 − 1)

⇒ 2a(2a × 2a − 1 × 1)

दिए गए बीजीय व्यंजकों का गुणनखंडन ज्ञात कीजिए,

यहाँ, a = 2a, b = 1

a2 − b2 = (a + b)(a − b) का उपयोग करे,

⇒ 8a3 − 2a = 2a(2a + 1)(2a − 1)

इस प्रकार, 8a3 – 2a का गुणनखंड 2a(2a + 1)(2a − 1) है।
shaalaa.com
बीजीय व्यंजकों के गुणनखंडन
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: बीजीय व्यंजक, सर्वसमिकाएँ और गुणनखंडन - प्रश्नावली [पृष्ठ २३२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 8
अध्याय 7 बीजीय व्यंजक, सर्वसमिकाएँ और गुणनखंडन
प्रश्नावली | Q 92. (xxix) | पृष्ठ २३२

संबंधित प्रश्न

सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-

4x2 – 49y2


सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए -

28ay2 – 175ax2


सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-

25ax2 – 25a


सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-

`x^2/25 - 625`


सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए -

16x4 – 81


सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए -

x4 – y4


सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए -

(x + y)4 – (x – y)4


सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-

x4 – y4 + x2 – y2


एक वर्ग का क्षेत्रफल 4x2 + 12xy + 9y2 है। इस वर्ग की भुजा ज्ञात कीजिए।


निम्न में, स्तंभ I के व्यंजकों को स्तंभ II के व्यंजकों से सुमेलित कीजिए -

स्तंभ I स्तंभ II
(1) (21x + 13y)2 (a) 441x2 – 169y2
(2) (21x – 13y)2 (b) 441x2 + 169y2 + 546xy
(3) (21x – 13y)(21x + 13y) (c) 441x2 + 169y2 – 546xy
  (d) 441x2 – 169y2 + 546xy

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×