हिंदी

निम्न में, स्तंभ I के व्यंजकों को स्तंभ II के व्यंजकों से सुमेलित कीजिए - स्तंभ I स्तंभ II (1) (21x + 13y)2 (a) 441x2 – 169y2 (2) (21x – 13y)2 (b) 441x2 + 169y2 + 546xy (3) (21x – 13y)(21x + 13y) - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

निम्न में, स्तंभ I के व्यंजकों को स्तंभ II के व्यंजकों से सुमेलित कीजिए -

स्तंभ I स्तंभ II
(1) (21x + 13y)2 (a) 441x2 – 169y2
(2) (21x – 13y)2 (b) 441x2 + 169y2 + 546xy
(3) (21x – 13y)(21x + 13y) (c) 441x2 + 169y2 – 546xy
  (d) 441x2 – 169y2 + 546xy
जोड़ियाँ मिलाइएँ

उत्तर

स्तंभ I स्तंभ II
(1) (21x + 13y)2 (b) 441x2 + 169y2 + 546xy
(2) (21x – 13y)2 (c) 441x2 + 169y2 – 546xy
(3) (21x – 13y)(21x + 13y) (a) 441x2 – 169y2

स्पष्टीकरण -

(1) हमारे पास है, (21x + 13y)2 = (21x)2 + (13y)2 + 2 × 21x × 13y  ...[पहचान का उपयोग करना, (a + b)2 = a2 + b2 + 2ab]

= 441x2 + 169y2 + 546xy   

(2) (21x – 13y)2 = (21x)2 + (13y)2 – 2 × 21x × 13y  ...[पहचान का उपयोग करना, (a – b)2 = a2 + b2 – 2ab]

= 441x2 + 169y2 – 546xy   

(3) (21x – 13y)(21x + 13y) = (21x)2 – (13y)2   ...[पहचान का उपयोग करना, (a – b)(a + b) = a2 – b2]

= 441x2 – 169y2 

shaalaa.com
बीजीय व्यंजकों के गुणनखंडन
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: बीजीय व्यंजक, सर्वसमिकाएँ और गुणनखंडन - प्रश्नावली [पृष्ठ २३५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 8
अध्याय 7 बीजीय व्यंजक, सर्वसमिकाएँ और गुणनखंडन
प्रश्नावली | Q 125. | पृष्ठ २३५

संबंधित प्रश्न

निम्नलिखित व्यंजक के गुणनखंड कीजिए:

 7a2 + 14a 


निम्नलिखित व्यंजक के गुणनखंड कीजिए:

10a2 − 15b2 + 20c


सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए -

4x2 – 25y2


सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-

`(2p^2)/25 - 32q^2`


सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-

49x2 – 36y2


सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-

`x^2/25 - 625`


सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए -

a4 – (a – b)4


सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए -

(x + y)4 – (x – y)4


(x + 5) प्रेक्षणों का योग x4 – 625 है। इन प्रेक्षणों का माध्य ज्ञात कीजिए।


एक त्रिभुज की ऊँचाई x4 + y4 है तथा आधार 14xy है। इस त्रिभुज का क्षेत्रफल ज्ञात कीजिए।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×