Advertisements
Advertisements
प्रश्न
एक त्रिभुज की ऊँचाई x4 + y4 है तथा आधार 14xy है। इस त्रिभुज का क्षेत्रफल ज्ञात कीजिए।
उत्तर
माना, त्रिभुज की ऊंचाई h हो और त्रिभुज का आधार b हो।
एक त्रिभुज की ऊँचाई x4 + y4 है और इसका आधार 14xy है,
⇒ h = x4 + y4, b = 14xy
त्रिभुज का क्षेत्रफल ज्ञात कीजिए।
चूंकि, त्रिभुज का क्षेत्रफल `1/2` × आधार × ऊँचाई
= `1/2 xx 14xy xx (x^4 + y^4)`
= 7xy(x4 + y4)
इस प्रकार, त्रिभुज का क्षेत्रफल 7xy(x4 + y4) है।
APPEARS IN
संबंधित प्रश्न
निम्नलिखित व्यंजक के गुणनखंड कीजिए:
20 l2m + 30 alm
निम्नलिखित व्यंजक के गुणनखंड कीजिए:
ax2y + bxy2 + cxyz
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-
`x^2/25 - 625`
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-
16x4 – 625y4
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए -
(a – b)2 – (b – c)2
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए -
`x^2 - y^2/100`
एक वर्ग का क्षेत्रफल 4x2 + 12xy + 9y2 है। इस वर्ग की भुजा ज्ञात कीजिए।
एक आयत का क्षेत्रफल x2 + 7x + 12 है। यदि इसकी चौड़ाई (x + 3) है, तो उसकी लंबाई ज्ञात कीजिए।
(x + 5) प्रेक्षणों का योग x4 – 625 है। इन प्रेक्षणों का माध्य ज्ञात कीजिए।