Advertisements
Advertisements
प्रश्न
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-
16x4 – 625y4
उत्तर
दिए गए बीजीय व्यंजक है -
16x4 – 625y4
दिए गए बीजीय व्यंजकों को हम इस प्रकार लिख सकते है,
⇒ 4x2 × 4x2 − 25y2 × 25y2
⇒ (4x2)2 − (25y2)2
दिए गए बीजीय व्यंजकों का गुणनखंडन ज्ञात कीजिए,
यहाँ, a = 4x2, b = 25y2
a2 − b2 = (a + b)(a − b) का उपयोग करे,
⇒ 16x4 − 625y4 = (4x2)2 − (25y2)2 = (4x2 − 25y2)(4x2 + 25y2)
इस प्रकार, 16x4 − 625y4 का गुणनखंड (4x2)2 − (25y2)2 = (4x2 − 25y2)(4x2 + 25y2) है।
APPEARS IN
संबंधित प्रश्न
निम्नलिखित व्यंजक के गुणनखंड कीजिए:
− 4a2 + 4ab − 4 ca
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए -
28ay2 – 175ax2
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-
25ax2 – 25a
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-
49x2 – 36y2
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-
`1/36a^2b^2 - 16/49b^2c^2`
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए -
(x + y)4 – (x – y)4
सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए -
`x^2 - y^2/100`
एक वृत्त का क्षेत्रफल व्यंजक πx2 + 6πx + 9π से दिया जाता है। वृत्त की त्रिज्या ज्ञात कीजिए।
(x + 5) प्रेक्षणों का योग x4 – 625 है। इन प्रेक्षणों का माध्य ज्ञात कीजिए।