हिंदी

निम्नलिखित व्यंजक के गुणनखंड कीजिए: ax2y + bxy2 + cxyz - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

निम्नलिखित व्यंजक के गुणनखंड कीजिए:

ax2y + bxy2 + cxyz

योग

उत्तर

ax2y = a × x × x × y

bxy2 = b × x × y × y

cxyz = c × x × y × z

सार्व गुणनखंड x और y हैं।

ax2y + bxy2 + cxyz 

= (a × x × x × y) + (b × x × y × y) + (c × x × y × z)

= (x × y) [(a × x) + (b × y) + (c × z)]

= xy (ax + by + cz)

shaalaa.com
बीजीय व्यंजकों के गुणनखंडन
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 14: गुणनखंडन - प्रश्नावली 14.1 [पृष्ठ २२९]

APPEARS IN

एनसीईआरटी Mathematics [Hindi] Class 8
अध्याय 14 गुणनखंडन
प्रश्नावली 14.1 | Q 2. (x) | पृष्ठ २२९

संबंधित प्रश्न

निम्नलिखित व्यंजक के गुणनखंड कीजिए:

7x − 42


सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए -

28ay2 – 175ax2


सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-

`x^2/9 - y^2/25`


सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-

49x2 – 36y2


सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-

`y^3 - y/9`


सर्वसमिका a2 − b2 = (a + b)(a − b) का प्रयोग करते हुए, निम्न के गुणनखंड कीजिए-

`(x^3y)/9 - (xy^3)/16`


एक बेलन का वक्र पृष्ठीय क्षेत्रफल 2π(y2 − 7y + 12) है और इसकी त्रिज्या (y − 3) है। तब, बेलन की ऊँचाई ज्ञात कीजिए। (बेलन का C.S.A. = 2πrh)


एक वृत्त का क्षेत्रफल व्यंजक πx2 + 6πx + 9π से दिया जाता है। वृत्त की त्रिज्या ज्ञात कीजिए।


एक वृत्त की त्रिज्या 7ab − 7bc − 14ac है। उस वृत्त की परिधि ज्ञात कीजिए `(pi = 22/7)` का प्रयोग कीजिए।


निम्न में, स्तंभ I के व्यंजकों को स्तंभ II के व्यंजकों से सुमेलित कीजिए -

स्तंभ I स्तंभ II
(1) (21x + 13y)2 (a) 441x2 – 169y2
(2) (21x – 13y)2 (b) 441x2 + 169y2 + 546xy
(3) (21x – 13y)(21x + 13y) (c) 441x2 + 169y2 – 546xy
  (d) 441x2 – 169y2 + 546xy

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×