Advertisements
Advertisements
प्रश्न
Evaluate:
`(3^4 xx 12^3 xx 36)/(2^5 xx 6^3)`
उत्तर
We have, `(3^4 xx 12^3 xx 36)/(2^5 xx 6^3) = (3^4 xx (2^2 xx 3)^3 xx (2^2 xx 3^2))/(2^5 xx (2 xx 3)^3` ......[∵ 12 = 2 × 2 × 3 and 36 = 2 × 2 × 3 × 3]
= `(3^4 xx 2^6 xx 3^3 xx 2^2 xx 3^2)/(2^5 xx 2^3 xx 3^3)` ......[∵ (a × b)m = am × bm]
= `((3^4 xx 3^2 xx 3^3) xx (2^6 xx 2^2))/((2^5 xx 2^3) xx 3^3)`
= `(3^(4+2+3) xx 2^(6+2))/(2^(5+3) xx 3^3)` ......[∵ am × an = am+n]
= `(3^9 xx 2^8)/(3^3 xx 2^8)` = 39–3 × 28–8 ......`[∵ a^m/a^n = a^(m-n)]`
= 36 × 20 = 36 × 1 ......[∵ a0 = 1]
= 729
APPEARS IN
संबंधित प्रश्न
Simplify and express the following in exponential form:
`(a^5/a^3)xx a^8`
Simplify and express the following in exponential form:
`(4^5 xx a^8b^3)/(4^5 xx a^5b^2)`
Simplify:
`(25 xx 5^2 xx t^8)/(10^3 xx t^4)`
Simplify:
`(3^5 xx 10^5 xx 25)/(5^7 xx 6^5)`
Simplify and write the answer in the exponential form.
[(22)3 x 36] x 56
Simplify: `(12^4 xx 9^3 xx 4)/(6^3 xx 8^2 xx 27)`
Simplify: `(2 xx 3^4 xx 2^5)/(9 xx 4^2)`
[(–3)2]3 is equal to ______.
Evaluate:
`(5^4 xx 7^4 xx 2^7)/(8 xx 49 xx 5^3)`
Evaluate:
`(125 xx 5^2 xx a^7)/(10^3 xx a^4)`