Advertisements
Advertisements
प्रश्न
Simplify:
`(3^5 xx 10^5 xx 25)/(5^7 xx 6^5)`
उत्तर
`(3^5 xx 10^5 xx 25)/(5^7 xx 6^5)`
= `(3^5 xx (2 xx 5)^5 xx 5 xx 5)/(5^7 xx 2^5 xx 3^5)`
= `(3^5 xx 2^5 xx 5^5 xx 5^2)/(5^7 xx 2^5 xx 3^5)` ...[∵ (a × b)m = am × bm]
= `(3^5 xx 2^5 xx 5^(5 + 2))` ...[∵ am × an = am + n]
= `(3^5 xx 2^5 xx 5^7)/(5^7 xx 2^5 xx 3^5)`
= 35 - 5 × 25 - 5 × 57 - 7 ...[∵ am ÷ an = am - n]
= 30 × 20 × 50
= 1 × 1 × 1
= 1
APPEARS IN
संबंधित प्रश्न
Simplify and express the following in exponential form:
`(a^5/a^3)xx a^8`
Simplify and express the following in exponential form:
`(4^5 xx a^8b^3)/(4^5 xx a^5b^2)`
Simplify:
`((2^5)^2 xx 7^3)/(8^3 xx 7)`
Simplify:
`(25 xx 5^2 xx t^8)/(10^3 xx t^4)`
Simplify and write the answer in the exponential form.
[(22)3 x 36] x 56
Simplify and express the following in exponential form:
(37 ÷ 35)4
Simplify and express the following in exponential form:
(515 ÷ 510) × 55
Evaluate:
`(125 xx 5^2 xx a^7)/(10^3 xx a^4)`
Evaluate:
`((6 xx 10)/(2^2 xx 5^3))^2 xx 25/27`
Evaluate:
`(6^4 xx 9^2 xx 25^3)/(3^2 xx 4^2 xx 15^6)`