Advertisements
Advertisements
प्रश्न
Evaluate:
`((6 xx 10)/(2^2 xx 5^3))^2 xx 25/27`
उत्तर
We have, `((6 xx 10)/(2^2 xx 5^3))^2 xx 25/27 = ((2 xx 3 xx 2 xx 5)/(2^2 xx 5^3)) xx 5^2/3^3` ......[∵ 6 = 2 × 3 and 10 = 2 × 5]
= `((2^2 xx 3 xx 5)/(2^2 xx 5^3)) xx 5^2/3^3`
= `(3/5^2) xx 5^2/3^3` ......[∵ (a × b)m = am × bm]
= `3^2/5^4 xx 5^2/3^3` ......[∵ (am)n = amn]
= `1/(5^2 xx 3)`
= `1/(25 xx 3)`
= `1/75`
APPEARS IN
संबंधित प्रश्न
Simplify:
`(25 xx 5^2 xx t^8)/(10^3 xx t^4)`
Simplify:
`(3^5 xx 10^5 xx 25)/(5^7 xx 6^5)`
Write exponential form for 8 × 8 × 8 × 8 taking base as 2.
Simplify and express the following in exponential form:
(37 ÷ 35)4
Simplify and express the following in exponential form:
`[(3/5)^3 xx (3/5)^8] ÷ [(3/5)^2 xx (3/5)^4]`
Evaluate:
`(7^8 xx a^10b^7c^12)/(7^6 xx a^8b^4c^12)`
Evaluate:
`(5^4 xx 7^4 xx 2^7)/(8 xx 49 xx 5^3)`
Evaluate:
`(125 xx 5^2 xx a^7)/(10^3 xx a^4)`
Evaluate:
`(3^4 xx 12^3 xx 36)/(2^5 xx 6^3)`
Evaluate:
`(6^4 xx 9^2 xx 25^3)/(3^2 xx 4^2 xx 15^6)`