Advertisements
Advertisements
Question
Simplify:
`(3^5 xx 10^5 xx 25)/(5^7 xx 6^5)`
Solution
`(3^5 xx 10^5 xx 25)/(5^7 xx 6^5)`
= `(3^5 xx (2 xx 5)^5 xx 5 xx 5)/(5^7 xx 2^5 xx 3^5)`
= `(3^5 xx 2^5 xx 5^5 xx 5^2)/(5^7 xx 2^5 xx 3^5)` ...[∵ (a × b)m = am × bm]
= `(3^5 xx 2^5 xx 5^(5 + 2))` ...[∵ am × an = am + n]
= `(3^5 xx 2^5 xx 5^7)/(5^7 xx 2^5 xx 3^5)`
= 35 - 5 × 25 - 5 × 57 - 7 ...[∵ am ÷ an = am - n]
= 30 × 20 × 50
= 1 × 1 × 1
= 1
APPEARS IN
RELATED QUESTIONS
Simplify and express the following in exponential form:
`(4^5 xx a^8b^3)/(4^5 xx a^5b^2)`
Simplify:
`(25 xx 5^2 xx t^8)/(10^3 xx t^4)`
Simplify and write the answer in the exponential form.
[(22)3 x 36] x 56
Simplify: `(12^4 xx 9^3 xx 4)/(6^3 xx 8^2 xx 27)`
Write exponential form for 8 × 8 × 8 × 8 taking base as 2.
Simplify and express the following in exponential form:
`[(7/11)^5 ÷ (7/11)^2] xx (7/11)^2`
Simplify and express the following in exponential form:
(37 ÷ 35)4
Simplify and express the following in exponential form:
`(a^6/a^4) xx a^5 xx a^0`
Evaluate:
`(7^8 xx a^10b^7c^12)/(7^6 xx a^8b^4c^12)`
Evaluate:
`(5^4 xx 7^4 xx 2^7)/(8 xx 49 xx 5^3)`