Advertisements
Advertisements
प्रश्न
Evaluate the following, using suitable identity
990 × 1010
उत्तर
990 × 1010 = (1000 – 10)(1000 + 10)
Taking a = 1000 and b = 10, then
(a – b)(a + b) = a2 – b2 becomes
(1000 – 10)(1000 + 10) = 10002 – 102
990 × 1010 = 1000000 – 100
990 × 1010 = 999900
APPEARS IN
संबंधित प्रश्न
Expand: 102 x 98
Simplify (5x – 3y)2 – (5x + 3y)2
The value of p for 512 – 492 = 100p is 2.
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
4x2 – 25y2
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
4x2 – 49y2
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
9x2 – 1
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
`(x^3y)/9 - (xy^3)/16`
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
x4 – y4 + x2 – y2
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
`x^2 - y^2/100`
Factorise the expression and divide them as directed:
(x2 – 22x + 117) ÷ (x – 13)