Advertisements
Advertisements
प्रश्न
Evaluate the following, using suitable identity
990 × 1010
उत्तर
990 × 1010 = (1000 – 10)(1000 + 10)
Taking a = 1000 and b = 10, then
(a – b)(a + b) = a2 – b2 becomes
(1000 – 10)(1000 + 10) = 10002 – 102
990 × 1010 = 1000000 – 100
990 × 1010 = 999900
APPEARS IN
संबंधित प्रश्न
Factorise the following expressions
m2 + m – 72
Using the identity (a + b)(a – b) = a2 – b2, find the following product
(1 + 3b)(3b – 1)
Simplify using identities
(3p + q)(3p – q)
The value of p for 512 – 492 = 100p is 2.
Using suitable identities, evaluate the following.
(339)2 – (161)2
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
9x2 – 1
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
`(4x^2)/9 - (9y^2)/16`
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
`x^2 - y^2/100`
Verify the following:
(ab + bc)(ab – bc) + (bc + ca)(bc – ca) + (ca + ab)(ca – ab) = 0
Find the value of `(198 xx 198 - 102 xx 102)/96`