Advertisements
Advertisements
प्रश्न
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
x4 – y4 + x2 – y2
उत्तर
We have,
x4 – y4 + x2 – y2 = (x2)2 – (y2)2 + (x2 + y2)
= (x2 + y2)(x2 – y2) + (x2 – y2)
= (x2 – y2)(x2 + y2 + 1)
= (x + y)(x – y)(x2 + y2 + 1)
APPEARS IN
संबंधित प्रश्न
Evaluate the following, using suitable identity
990 × 1010
Find the value of (x – y)(x + y)(x2 + y2)
672 – 372 = (67 – 37) × ______ = ______.
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
4x2 – 49y2
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
3a2b3 – 27a4b
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
28ay2 – 175ax2
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
a4 – (a – b)4
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
`x^2 - y^2/100`
The radius of a circle is 7ab – 7bc – 14ac. Find the circumference of the circle. `(pi = 22/7)`
Find the value of a, if 9a = 762 – 672