Advertisements
Advertisements
प्रश्न
Find the value of a, if 9a = 762 – 672
उत्तर
We have,
9a = 762 – 672
⇒ 9a = (76 + 67)(76 – 67) ...[Using the identity, a2 – b2 = (a + b)(a – b)]
⇒ 9a = 143 × 9
⇒ `a = (143 xx 9)/9`
⇒ a = 143
APPEARS IN
संबंधित प्रश्न
Expand: (3x + 4y)(3x - 4y)
Factorise the following algebraic expression by using the identity a2 – b2 = (a + b)(a – b)
z2 – 16
Factorise the following algebraic expression by using the identity a2 – b2 = (a + b)(a – b)
x4 – y4
672 – 372 = (67 – 37) × ______ = ______.
The value of p for 512 – 492 = 100p is 2.
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
`x^2/8 - y^2/18`
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
`1/36a^2b^2 - 16/49b^2c^2`
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
(x + y)4 – (x – y)4
Verify the following:
(p – q)(p2 + pq + q2) = p3 – q3
Find the value of a, if pqa = (3p + q)2 – (3p – q)2