Advertisements
Advertisements
प्रश्न
Find the value of a, if pqa = (3p + q)2 – (3p – q)2
उत्तर
We have,
pqa = (3p + q)2 – (3p – q)2
⇒ pqa = [(3p + q) + (3p – q)][(3p + q) – (3p – q)] ...[Using the identity, a2 – b2 = (a + b)(a – b)]
⇒ pqa = [(3p + q + 3p – q)][3p + q – 3p + q]
⇒ pqa = 6p × 2q
⇒ `a = (6p xx 2q)/(pq) = ((6 xx 2)pq)/(pq)`
⇒ a = 12
APPEARS IN
संबंधित प्रश्न
(5 + 20)(–20 – 5) = ?
a2 – b2 = (a + b) ______.
672 – 372 = (67 – 37) × ______ = ______.
Using suitable identities, evaluate the following.
9.8 × 10.2
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
49x2 – 36y2
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
`x^2/8 - y^2/18`
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
8a3 – 2a
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
9x2 – (3y + z)2
Factorise the expression and divide them as directed:
(x2 – 22x + 117) ÷ (x – 13)
Find the value of `(6.25 xx 6.25 - 1.75 xx 1.75)/(4.5)`